The index calculus attack for hyperelliptic curves of small genus

Nicolas Thériault

nicolast@math.toronto.edu

University of Toronto

The Discrete Log Problem

Let *C* be an imaginary quadratic curve of genus *g* defined over the finite field \mathbb{F}_q , i.e. a nonsingular hyperelliptic curve with a single point at infinity.

Let D_1 , D_2 be two elements of $Jac(C)(\mathbb{F}_q)$ such that $D_2 \in \langle D_1 \rangle$.

The *discrete log problem* for the pair (D_1, D_2) on $Jac(C)(\mathbb{F}_q)$ consist in computing the smallest integer $\lambda \in \mathbb{N}$ such that

$$D_2 = \lambda D_1.$$

Hyperelliptic Jacobians

C is a Nonsingular hyperelliptic curve of the form

 $C: Y^2 + h(X)Y = f(X)$

with $\deg(h) \leq g$ and $\deg(f) = 2g + 1$ (g is the genus of C).

Jac(C)(𝔽_q) is the divisor class group, which is isomorphic to the ideal class group.

•
$$\left(\sqrt{q}-1\right)^{2g} \leq \left|Jac(C)(\mathbb{F}_q)\right| \leq \left(\sqrt{q}+1\right)^{2g}$$
, i.e.
 $\left|Jac(C)(\mathbb{F}_q)\right| = q^g + O\left(gq^{g-1/2}\right).$

Reduced divisors in $Jac(C)(\mathbb{F}_q)$ can be added in $O\left(g^2(\log q)^2\right)$ bit operations (Cantor).

• To a point $P \in C(\overline{\mathbb{F}_q})$ we associate the divisor

$$D(P) = P - \infty.$$

For every reduced divisor

$$D = \sum_{i=1}^{k} D(P_i)$$

(with $P_i = (x_i, y_i) \in C(\overline{\mathbb{F}_q})$), there is a unique representation by a pair of polynomials [a(x), b(x)], $a(x), b(x) \in \overline{\mathbb{F}_q}[x]$, with

$$a(x) = \prod_{i=1}^{k} \left(x - x_i \right)$$

and $b(x_i) = y_i$ satisfying $deg(b) < deg(a) \le g$ and $b(x)^2 + h(x)b(x) - f(x)$ divisible by a(x).

- A reduced divisor D = [a(x), b(x)] is in $Jac(C)(\mathbb{F}_q)$ if and only if $a(x), b(x) \in \mathbb{F}_q[x]$.
- To know if the points P_i associated to a reduced divisor are in $C(\mathbb{F}_q)$, we can check if a(x) splits completely in $\mathbb{F}_q[x]$.
- To find the points P_i associated to a reduced divisor, we need to completely factor a(x).
- D(-P) = -D(P).

Generic attacks

- Three main types of attack:
 - Shank's Baby Step Giant Step algorithm;
 - **9** Pollard's ρ method;
 - Pollard's λ (kangaroo) method.
- They work for every abelian group.
- They require

 $O\left(\sqrt{\text{group order}}\right)$

group operations to solve the discrete log.

Attacks for hyperelliptic curves

Weil descent attack:

- Frey / Gaudry, Hess and Smart,
- for some curves defined over field extensions.
- Index calculus attack for large genus:
 - Adleman, DeMarrais and Huang
- Index calculus attack for small genus:
 - Gaudry,
 - \checkmark for curves of genus > 4,
 - \checkmark variation (Harley) for curves of genus > 3,
 - \checkmark can be improved for curves of genus > 2.

Index calculus

We want to find a good set of points (the factor base)

$$P_1, P_2, \ldots, P_t$$

and "random" linear combinations

$$\alpha_i D_1 + \beta_i D_2 = \sum_{j=1}^t c_{ij} P_j.$$

We then find γ_i 's such that for every j

$$\sum_{i=1}^{s} \gamma_i c_{ij} = 0.$$

Index calculus

This gives us

$$0 = \sum_{j=1}^{t} \left(\sum_{i=1}^{s} \gamma_i c_{ij} \right) P_j$$

$$= \sum_{i=1}^{s} \gamma_i \left(\sum_{j=1}^{t} c_{ij} P_j \right)$$

$$= \sum_{i=1}^{s} \gamma_i (\alpha_i D_1 + \beta_i D_2)$$

$$= \left(\sum_{i=1}^{s} \gamma_i \alpha_i \right) D_1 + \left(\sum_{i=1}^{s} \gamma_i \beta_i \right) D_2$$

$$= \alpha D_1 + \beta D_2$$

Index calculus

If $\alpha \neq 0$, we can solve for D_2 :

$$D2 = \frac{-\alpha}{\beta}D1$$

i.e.

$$\lambda = \frac{-\alpha}{\beta}$$
$$= \frac{-\sum_{i=1}^{s} \gamma_i \alpha_i}{\sum_{i=1}^{s} \gamma_i \beta_i}$$

Let $\mathcal{P} = C(\mathbb{F}_q)$, i.e. \mathcal{P} is the set of points of C over \mathbb{F}_q . Let B be a subset of \mathcal{P} .

A divisor is **smooth relative to** *B* if it is reduced and it can be written in the form

$$\sum_{i=1}^{k} D(P_i)$$

with the P_i 's in B and $k \leq g$.

In this case, *B* is called the *factor base*.

A *potentially smooth* divisor is smooth relative to \mathcal{P} .

- We look for reduced divisors associated to points in $C(\mathbb{F}_q)$.
- From $C(\mathbb{F}_q)$, we define a factor base.
- We use a random walk to get a sequence (T_i) where the T_i 's can be written as

$$T_i = \alpha_i D_1 + \beta_i D_2.$$

- From the sequence (T_i) , we extract a subsequence (R_j) of smooth divisors.
- To a smooth divisor R_j we can associate a vector v_j corresponding to its factorisation over the factor base.
- The vectors v_j are put together into a matrix M.

- When the size of M is large enough, we use linear algebra to find a nonzero vector in the kernel of M.
- We can then write

$$\sum_{j=0}^{m} \gamma_j \mathbf{v_j} = \mathbf{0} \quad \text{and} \quad \sum_{j=0}^{m} \gamma_j R_j = 0$$

and substituting $R_j = \alpha_j D_1 + \beta_j D_2$, we get

$$\alpha D_1 + \beta D_2 = 0$$

from which we get $D_2 = \lambda D_1$.

Working with the factor base

- Make use of the equality D(-P) = -D(P).
- If P is in the factor base, -P is also in the factor base, but we use only P for the factorization.
- Example of representation:

$$D(P_1) + D(-P_{29}) + D(-P_{103}) = D(P_1) - D(P_{29}) - D(P_{103})$$

- The "size" of the factor base is |B|/2 for the linear algebra.
- Decreases running time for the search by 2 and time for the linear algebra by 4.

Given a factor base $B \subset \mathcal{P}$, a point $P \in \mathcal{P}$ is called a *large prime* if $P \notin B$.

A reduced divisor

$$D = \sum_{i=1}^{k} D(P_i)$$

is said to be *almost-smooth* if:

- \blacksquare all but one of the P_i 's are in B;
- the remaining P_i is a large prime.

Intersections

- Let T_i be an almost-smooth divisor with the large prime P.
- T_i is called an *intersection* if one of the previous T_j (j < i) is an almost-smooth divisor with large prime ±P.
- If T_i is an intersection with T_j , we can use T_i and T_j to build a non-reduced divisor that factors over the factor base.
- Intersections are used to decrease the time required to build the linear algebra system.
- T_i is an intersection with at most one of the previous almost-smooth T_j 's.

Let T_1, T_2 be two almost-smooth divisors with large prime P, i.e. T_1, T_2 are of the form

$$T_1 = D(P) + \sum_{i=1}^{k_1 - 1} D(P_{1,i})$$
 and $T_2 = D(P) + \sum_{i=1}^{k_2 - 1} D(P_{2,i})$

with $P_{1,i}, P_{2,i} \in B$. We can use the divisor

$$T' = T_1 - T_2 = \sum_{i=1}^{k_1 - 1} D(P_{1,i}) - \sum_{i=1}^{k_2 - 1} D(P_{2,i}).$$

Let T_1, T_2 be two almost-smooth divisors such that T_1 has large prime P and T_2 has large prime -P, i.e. T_1, T_2 are of the form

$$T_1 = D(P) + \sum_{i=1}^{k_1 - 1} D(P_{1,i})$$
 and $T_2 = D(-P) + \sum_{i=1}^{k_2 - 1} D(P_{2,i})$

with $P_{1,i}, P_{2,i} \in B$. We can use the divisor

$$T' = T_1 + T_2 = \sum_{i=1}^{k_1 - 1} D(P_{1,i}) + \sum_{i=1}^{k_2 - 1} D(P_{2,i}).$$

Algorithm

Using a smaller factor base:

- 1. Search for the elements of the factor base
- 2. Initialization of the random walk
- 3. Search for smooth divisors (random walk)
 - Search for potentially smooth divisors
 - Factorization of the potentially smooth divisors
 - Construction of the linear algebra system
- 4. Solution of the linear algebra system
- 5. Final solution

Algorithm

Using large primes:

- 1. Search for the elements of the factor base
- 2. Initialization of the random walk
- 3. Search for smooth and almost-smooth divisors (random walk)
 - Search for potentially smooth divisors
 - Factorization of the potentially smooth divisors
 - Cancellation of the large primes (for intersections)
 - Construction of the linear algebra system
- 4. Solution of the linear algebra system
- 5. Final solution

Running time analysis

- Assume classical arithmetic.
- Assume q > g!.
- Assume the size of the factor base is q^r , $\frac{2}{3} < r < 1$.
- Find the expected running time with a factor base of that size.
- \checkmark Choose r to "minimize" the running time.
- When using large primes, also assume $q^r < \frac{|C(\mathbb{F}_q)|}{2}$.

We try values of $x_i \in \mathbb{F}_q$ to see if they correspond to *x*-coordinates of points of $C(\mathbb{F}_q)$.

We add points of $C(\mathbb{F}_q)$ in *B* until the factor base has the desired size.

This can be done in $O(g^2q(\log q)^2)$ bit operations.

Initialization

We choose the state function

$$\mathcal{R}: Jac(C)(\mathbb{F}_q) \times \{1, 2, \dots, n\} \quad \to \quad Jac(C)(\mathbb{F}_q)$$
$$(D, i) \quad \mapsto \quad D + T^{(i)}.$$

We take $n = O(\log(|Jac(C)(\mathbb{F}_q)|))$.

We choose n random $\alpha^{(i)}$'s and $\beta^{(i)}$'s and compute

$$T^{(i)} = \alpha^{(i)} D_1 + \beta^{(i)} D_2.$$

This can be done in $O\left(g^4(\log q)^4\right)$ bit operations.

We need a nonzero vector in the kernel of the matrix M.

The matrix is sparse with weigth $O(gq^r)$.

Operations are done modulo $|Jac(C)(\mathbb{F}_q)|$.

Using algorithms by Lanczos or Wiedemann, this can be done in

 $O\left(g^3 q^{2r} (\log q)^2\right)$

Final solution

We compute

$$\alpha = \sum_{i} \gamma_{i} \alpha_{i},$$
$$\beta = \sum_{i} \gamma_{i} \beta_{i}$$

and

$$\lambda = -\frac{\alpha}{\beta}.$$

The computations are done modulo $|J_q|$.

This can be done in $O\left(g^2q^r(\log q)^2\right)$ bit operations.

Proposition: There are
$$\frac{q^g}{g!} + O\left(\frac{gq^{g-\frac{1}{2}}}{g!}\right)$$
 potentially smooth divisors in $Jac(C)(\mathbb{F}_q)$.

The proportion of potentially smooth divisors in $Jac(C)(\mathbb{F}_q)$ is then

$$\frac{\frac{q^g}{g!} + O\left(\frac{gq^{g-\frac{1}{2}}}{g!}\right)}{q^g + O\left(gq^{g-\frac{1}{2}}\right)} = \frac{1}{g!} + O\left(\frac{g}{g!\sqrt{q}}\right).$$

We expect to have a potentially smooth divisor for every O(g!) divisors computed in the search.

Proposition: For $\frac{2}{3} < r < 1$, there are $\frac{q^{rg}}{g!} + O\left(\frac{g^2q^{r(g-1)}}{g!}\right)$ smooth divisors in $Jac(C)(\mathbb{F}_q)$.

The proportion of smooth divisors in $Jac(C)(\mathbb{F}_q)$ is then

$$\frac{\frac{q^{rg}}{g!} + O\left(\frac{g^2 q^{r(g-1)}}{g!}\right)}{q^g + O\left(gq^{g-\frac{1}{2}}\right)} = \frac{q^{-(1-r)g}}{g!} + O\left(\frac{g^2 q^{-(1-r)g-r}}{g!}\right) + O\left(\frac{gq^{-(1-r)g-\frac{1}{2}}}{g!}\right).$$

We expect to have to look at $O\left(g!q^{(1-r)g}\right)$ divisors for each smooth divisor found in the search.

• We need $O(q^r)$ smooth divisors.

- We expect to look at $O\left(g!q^{(1-r)g+r}\right)$ divisor, each taking:
 - $O(g^2(\log q)^2)$ bit operations to compute the reduced divisor;
 - $O(g \log q)$ bit operations to compute α_i and β_i ;
 - $O(g^2(\log q)^2)$ bit operations to check if a(x) splits completely.
- Of these, we expect $O(q^{(1-r)g+r})$ to be potentially smooth (and must be factorized);
 - each factorization takes $O(g^2(\log q)^2)$ bit operations.
- Total of $O\left(g^2g!q^{g-(g-1)r}(\log q)^2\right)$ bit operations.

Proposition: For $\frac{2}{3} < r < 1$, there are $\frac{q^{rg+1-r}}{(g-1)!} + O\left(\frac{q^{rg}}{(g-1)!}\right)$ almost-smooth divisors in $Jac(C)(\mathbb{F}_q)$.

The proportion of almost-smooth divisors in $Jac(C)(\mathbb{F}_q)$ is

$$\frac{\frac{q^{rg+1-r}}{(g-1)!} + O\left(\frac{q^{rg}}{(g-1)!}\right)}{q^g + O\left(gq^{g-\frac{1}{2}}\right)} = \frac{q^{-(1-r)(g-1)}}{(g-1)!} + O\left(\frac{q^{-(1-r)g}}{(g-1)!}\right) + O\left(\frac{q^{-(1-r)g}}{(g-1)!}\right)$$

During the search, we can expect to look at $O((g-1)!q^{(1-r)(g-1)})$ divisors for each almost-smooth divisors found.

Intersections

Let Q(n, s, i) be the probability of having *i* intersections out of a sample of size *s* drawn with replacement from a set of *n* elements and let $E_{n,s}$ be the expected number of intersections, i.e.

$$E_{n,s} = \sum_{i=0}^{s-1} iQ(n, s, i).$$

<u>Theorem</u>: If $3 \le s < n/2$, then $E_{n,s}$ is between $\frac{2s^2}{3n}$ and $\frac{s^2}{n}$.

If we let *n* be the number of large primes (i.e. $n = q - q^r + O(\sqrt{q})$) and ask that $E_{n,s} = O(q^r)$, then we need $s = O(q^{(r+1)/2})$. It will then take

$$O\left(s(g-1)!q^{(g-1)(1-r)}\right) = O\left((g-1)!q^{(g-1)(1-r)+\frac{r+1}{2}}\right)$$

steps of random walk to build the linear algebra system.

Intersections

Sketch of proof:

By definition, $\sum_{i=0}^{s-1} Q(n, s, i) = 1$ and $\sum_{i=0}^{s-1} iQ(n, s, i) = E_{n,s}$. If we consider the probability of having *i* intersections after s + 1 draws, we have

$$Q(n, s+1, i) = \frac{n - 2(s - i)}{n}Q(n, s, i) + \frac{2(s - i + 1)}{n}Q(n, s, i - 1),$$

which gives us

$$E_{n,s+1} = \frac{n-2}{n} E_{n,s} + \frac{2s}{n}.$$

Solving for $E_{n,s}$ (using $E_{n,1} = 0$), we get

$$E_{n,s} = \frac{n}{2} \left(1 - \frac{2}{n} \right)^s + s - \frac{n}{2} = \frac{n}{2} \sum_{i=2}^s \binom{s}{i} \left(\frac{-2}{n} \right)^i$$

• We expect to look at $O\left((g-1)!q^{(g-1)(1-r)+\frac{r+1}{2}}\right)$ divisors;

• each divisor takes $O(g^2(\log q)^2)$ bit operations.

- Of these, we expect $O\left(q^{(g-1)(1-r)+\frac{r+1}{2}}/g\right)$ to be potentially smooth each taking an extra $O(g^2(\log q)^2)$ bit operations.
- We expect to also get $O\left(q^{r-\frac{1-r}{2}}/g\right)$ smooth divisors.

• Total of
$$O\left(gg!q^{(g-1)(1-r)+\frac{r+1}{2}}(\log(q))^2\right)$$
 bit operations.

Using a smaller factor base:

- **1.** $O(g^2q(\log q)^2)$
- **2.** $O(g^4(\log q)^4)$
- **3.** $O\left(g^2g!q^{g-(g-1)r}(\log q)^2\right)$
- **4.** $O\left(g^3 q^{2r} (\log q)^2\right)$
- **5.** $O(g^2q^r(\log q)^2)$

The total running time is then

$$O\left(g^2 g! q^{g-(g-1)r} (\log(q))^2\right) + O\left(g^3 q^{2r} (\log(q))^2\right).$$

For the original index calculus attack by Gaudry, $q^r = |C(\mathbb{F}_q)|$, which gives a running time of

$$O\left(g^3q^{2+\epsilon}\right) + O\left(g^2g!q^{1+\epsilon}\right)$$

bit operations.

To optimize the running time, we choose

$$r = \frac{g + \log_q((g-1)!)}{g+1},$$

which gives us

$$O\left(g^5q^{2-\frac{2}{g+1}+\epsilon}\right)$$

Using a smaller factor base:

1. $O(g^2q(\log q)^2)$ 2. $O(g^4(\log q)^4)$ 3. $O(gg!q^{(g-1)(1-r)+\frac{r+1}{2}}(\log(q))^2)$ 4. $O(g^3q^{2r}(\log q)^2)$ 5. $O(g^2q^r(\log q)^2)$

The total running time is then

$$O\left(gg!q^{(g-1)(1-r)+\frac{r+1}{2}}(\log(q))^2\right) + O\left(g^3q^{2r}(\log(q))^2\right).$$

To optimize the running time, we choose

$$r = \frac{g - \frac{1}{2} + \log_q((g - 1)!/g)}{g + \frac{1}{2}},$$

which gives us

$$O\left(g^5q^{2-\frac{4}{2g+1}+\epsilon}\right)$$

Comparison

For small genus, we have:

g	square root	original index	smaller factor	with large
	allachs	Calculus	Dase	primes
3	$q^{3/2}$	q^2	$q^{3/2}$	$q^{10/7}$
4	q^2	q^2	$q^{8/5}$	$q^{14/9}$
5	$q^{5/2}$	q^2	$q^{5/3}$	$q^{18/11}$
6	q^3	q^2	$q^{12/7}$	$q^{22/13}$

One of the biggest problems of the index calculus attack is the memory requirement.

- For the original index calculus: $O(gq^{1+\epsilon})$ bits.
 - For the linear algebra.
- Using a smaller factor base: $O\left(g^2q^{\frac{g}{g+1}+\epsilon}\right)$ bits.
 - For the linear algebra.
- Using large primes: $O\left(g^2q^{\frac{2g}{2g+1}+\epsilon}\right)$ bits.
 - For the storage of the almost-smooth divisors.
 - The linear algebra requires $O\left(g^2q^{\frac{2g-1}{2g+1}+\epsilon}\right)$ bits.