
.

The index calculus attack
for hyperelliptic curves

of small genus

Nicolas Thériault

nicolast@math.toronto.edu

University of Toronto

– p. 1/38

The Discrete Log Problem

Let C be an imaginary quadratic curve of genus g defined over the
finite field Fq, i.e. a nonsingular hyperelliptic curve with a single point
at infinity.

Let D1, D2 be two elements of Jac(C)(Fq) such that D2 ∈ 〈D1〉.

The discrete log problem for the pair (D1, D2) on Jac(C)(Fq) consist
in computing the smallest integer λ ∈ N such that

D2 = λD1.

– p. 2/38

Hyperelliptic Jacobians

C is a Nonsingular hyperelliptic curve of the form

C : Y 2 + h(X)Y = f(X)

with deg(h) ≤ g and deg(f) = 2g + 1 (g is the genus of C).

Jac(C)(Fq) is the divisor class group, which is isomorphic to the
ideal class group.

(√
q − 1

)2g ≤ |Jac(C)(Fq)| ≤
(√

q + 1
)2g, i.e.

|Jac(C)(Fq)| = qg + O
(

gqg−1/2
)

.

Reduced divisors in Jac(C)(Fq) can be added in O
(

g2(log q)2
)

bit
operations (Cantor).

– p. 3/38

Hyperelliptic Jacobians

To a point P ∈ C(Fq) we associate the divisor

D(P) = P −∞.

For every reduced divisor

D =
∑k

i=1
D(Pi)

(with Pi = (xi, yi) ∈ C(Fq)), there is a unique representation by a
pair of polynomials [a(x), b(x)], a(x), b(x) ∈ Fq[x], with

a(x) =
∏k

i=1
(x − xi)

and b(xi) = yi satisfying deg(b) < deg(a) ≤ g and
b(x)2 + h(x)b(x) − f(x) divisible by a(x).

– p. 4/38

Hyperelliptic Jacobians

A reduced divisor D = [a(x), b(x)] is in Jac(C)(Fq) if and only if
a(x), b(x) ∈ Fq[x].

To know if the points Pi associated to a reduced divisor are in
C(Fq), we can check if a(x) splits completely in Fq[x].

To find the points Pi associated to a reduced divisor, we need to
completely factor a(x).

D(−P) = −D(P).

– p. 5/38

Generic attacks

Three main types of attack:

Shank’s Baby Step - Giant Step
algorithm;

Pollard’s ρ method;

Pollard’s λ (kangaroo) method.

They work for every abelian group.

They require

O
(

√

group order
)

group operations to solve the discrete log.

– p. 6/38

Attacks for hyperelliptic curves

Weil descent attack:

Frey / Gaudry, Hess and Smart,

for some curves defined over field extensions.

Index calculus attack for large genus:

Adleman, DeMarrais and Huang

Index calculus attack for small genus:

Gaudry,

for curves of genus > 4,

variation (Harley) for curves of genus > 3,

can be improved for curves of genus > 2.

– p. 7/38

Index calculus

We want to find a good set of points (the factor base)

P1, P2, . . . , Pt

and “random” linear combinations

αiD1 + βiD2 =
t
∑

j=1

cijPj .

We then find γi’s such that for every j

s
∑

i=1

γicij = 0.

– p. 8/38

Index calculus

This gives us

0 =
t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

t
∑

j=1

cijPj

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

– p. 9/38

Index calculus

If α 6= 0, we can solve for D2 :

D2 =
−α

β
D1

i.e.

λ =
−α

β

=

−
s
∑

i=1

γiαi

s
∑

i=1

γiβi

– p. 10/38

Smooth divisors

Let P = C(Fq), i.e. P is the set of points of C over Fq. Let B be a
subset of P .

A divisor is smooth relative to B if it is reduced and it can be written
in the form

k
∑

i=1

D(Pi)

with the Pi’s in B and k ≤ g.

In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P .

– p. 11/38

The index calculus attack

We look for reduced divisors associated to points in C(Fq).

From C(Fq), we define a factor base.

We use a random walk to get a sequence (Ti) where the Ti’s can
be written as

Ti = αiD1 + βiD2.

From the sequence (Ti), we extract a subsequence (Rj) of
smooth divisors.

To a smooth divisor Rj we can associate a vector vj

corresponding to its factorisation over the factor base.

The vectors vj are put together into a matrix M .

– p. 12/38

The index calculus attack

When the size of M is large enough, we use linear algebra to find
a nonzero vector in the kernel of M .

We can then write
m
∑

j=0

γjvj = 0 and
m
∑

j=0

γjRj = 0

and substituting Rj = αjD1 + βjD2, we get

αD1 + βD2 = 0

from which we get D2 = λD1.

– p. 13/38

Working with the factor base

Make use of the equality D(−P) = −D(P).

If P is in the factor base, −P is also in the factor base, but we use
only P for the factorization.

Example of representation:

D(P1) + D(−P29) + D(−P103) = D(P1) − D(P29) − D(P103)

The “size” of the factor base is |B|/2 for the linear algebra.

Decreases running time for the search by 2 and time for the linear
algebra by 4.

– p. 14/38

Large primes

Given a factor base B ⊂ P , a point P ∈ P is called a large prime if
P /∈ B.

A reduced divisor

D =
k
∑

i=1

D(Pi)

is said to be almost-smooth if:

all but one of the Pi’s are in B;

the remaining Pi is a large prime.

– p. 15/38

Intersections

Let Ti be an almost-smooth divisor with the large prime P .

Ti is called an intersection if one of the previous Tj (j < i) is an
almost-smooth divisor with large prime ±P .

If Ti is an intersection with Tj , we can use Ti and Tj to build a
non-reduced divisor that factors over the factor base.

Intersections are used to decrease the time required to build the
linear algebra system.

Ti is an intersection with at most one of the previous
almost-smooth Tj ’s.

– p. 16/38

Cancelling large primes

Let T1, T2 be two almost-smooth divisors with large prime P , i.e. T1, T2

are of the form

T1 = D(P) +
k1−1
∑

i=1

D(P1,i) and T2 = D(P) +
k2−1
∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B. We can use the divisor

T ′ = T1 − T2 =
k1−1
∑

i=1

D(P1,i) −
k2−1
∑

i=1

D(P2,i).

– p. 17/38

Cancelling large primes

Let T1, T2 be two almost-smooth divisors such that T1 has large prime
P and T2 has large prime −P , i.e. T1, T2 are of the form

T1 = D(P) +
k1−1
∑

i=1

D(P1,i) and T2 = D(−P) +
k2−1
∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B. We can use the divisor

T ′ = T1 + T2 =
k1−1
∑

i=1

D(P1,i) +
k2−1
∑

i=1

D(P2,i).

– p. 18/38

Algorithm

Using a smaller factor base:

1. Search for the elements of the factor base

2. Initialization of the random walk

3. Search for smooth divisors (random walk)

Search for potentially smooth divisors

Factorization of the potentially smooth divisors

Construction of the linear algebra system

4. Solution of the linear algebra system

5. Final solution

– p. 19/38

Algorithm

Using large primes:

1. Search for the elements of the factor base

2. Initialization of the random walk

3. Search for smooth and almost-smooth divisors (random walk)

Search for potentially smooth divisors

Factorization of the potentially smooth divisors

Cancellation of the large primes (for intersections)

Construction of the linear algebra system

4. Solution of the linear algebra system

5. Final solution

– p. 20/38

Running time analysis

Assume classical arithmetic.

Assume q > g!.

Assume the size of the factor base is qr, 2
3 < r < 1.

Find the expected running time with a factor base of that size.

Choose r to “minimize” the running time.

When using large primes, also assume qr < |C(Fq)|
2 .

– p. 21/38

Factor base

We try values of xi ∈ Fq to see if they correspond to x-coordinates of
points of C(Fq).

We add points of C(Fq) in B until the factor base has the desired size.

This can be done in O
(

g2q(log q)2
)

bit operations.

– p. 22/38

Initialization

We choose the state function

R : Jac(C)(Fq) × {1, 2, . . . , n} → Jac(C)(Fq)

(D, i) 7→ D + T (i).

We take n = O (log(|Jac(C)(Fq)|)).

We choose n random α(i)’s and β(i)’s and compute

T (i) = α(i)D1 + β(i)D2.

This can be done in O
(

g4(log q)4
)

bit operations.

– p. 23/38

Linear algebra

We need a nonzero vector in the kernel of the matrix M .

The matrix is sparse with weigth O (gqr).

Operations are done modulo |Jac(C)(Fq)|.

Using algorithms by Lanczos or Wiedemann, this can be done in

O
(

g3q2r(log q)2
)

bit operations.

– p. 24/38

Final solution

We compute

α =
∑

i

γiαi,

β =
∑

i

γiβi

and
λ = −α

β
.

The computations are done modulo |Jq|.

This can be done in O
(

g2qr(log q)2
)

bit operations.

– p. 25/38

Potentially smooth divisors

Proposition: There are qg

g! + O

(

gqg−
1
2

g!

)

potentially smooth divisors in

Jac(C)(Fq).

The proportion of potentially smooth divisors in Jac(C)(Fq) is then

qg

g! + O

(

gqg−
1
2

g!

)

qg + O
(

gqg− 1
2

) =
1

g!
+ O

(

g

g!
√

q

)

.

We expect to have a potentially smooth divisor for every O(g!) divisors
computed in the search.

– p. 26/38

Smooth divisors

Proposition: For 2
3 < r < 1, there are qrg

g! + O
(

g2qr(g−1)

g!

)

smooth

divisors in Jac(C)(Fq).

The proportion of smooth divisors in Jac(C)(Fq) is then

qrg

g! + O
(

g2qr(g−1)

g!

)

qg + O
(

gqg− 1
2

) =
q−(1−r)g

g!
+ O

(

g2q−(1−r)g−r

g!

)

+O

(

gq−(1−r)g− 1
2

g!

)

.

We expect to have to look at O
(

g!q(1−r)g
)

divsiors for each smooth
divisor found in the search.

– p. 27/38

Search

We need O(qr) smooth divisors.

We expect to look at O
(

g!q(1−r)g+r
)

divisor, each taking:

O(g2(log q)2) bit operations to compute the reduced divisor;

O(g log q) bit operations to compute αi and βi;

O(g2(log q)2) bit operations to check if a(x) splits completely.

Of these, we expect O
(

q(1−r)g+r
)

to be potentially smooth (and
must be factorized);

each factorization takes O(g2(log q)2) bit operations.

Total of O
(

g2g!qg−(g−1)r(log q)2
)

bit operations.

– p. 28/38

Almost-smooth divisors

Proposition: For 2
3 < r < 1, there are qrg+1−r

(g−1)! + O
(

qrg

(g−1)!

)

almost-smooth divisors in Jac(C)(Fq).

The proportion of almost-smooth divisors in Jac(C)(Fq) is

qrg+1−r

(g−1)! + O
(

qrg

(g−1)!

)

qg + O
(

gqg− 1
2

) =
q−(1−r)(g−1)

(g − 1)!
+ O

(

q−(1−r)g

(g − 1)!

)

+O

(

g
q−(1−r)(g−1)− 1

2

(g − 1)!

)

.

During the search, we can expect to look at O
(

(g − 1)!q(1−r)(g−1)
)

divisors for each almost-smooth divisors found.

– p. 29/38

Intersections

Let Q(n, s, i) be the probability of having i intersections out of a
sample of size s drawn with replacement from a set of n elements and
let En,s be the expected number of intersections, i.e.

En,s =
s−1
∑

i=0

iQ(n, s, i).

Theorem: If 3 ≤ s < n/2, then En,s is between 2s2

3n and s2

n .

If we let n be the number of large primes (i.e. n = q − qr + O(
√

q)) and
ask that En,s = O(qr), then we need s = O

(

q(r+1)/2
)

. It will then take

O
(

s(g − 1)!q(g−1)(1−r)
)

= O
(

(g − 1)!q(g−1)(1−r)+ r+1
2

)

steps of random walk to build the linear algebra system.

– p. 30/38

Intersections

Sketch of proof:
By definition,

∑s−1
i=0 Q(n, s, i) = 1 and

∑s−1
i=0 iQ(n, s, i) = En,s.

If we consider the probability of having i intersections after s + 1
draws, we have

Q(n, s + 1, i) =
n − 2(s − i)

n
Q(n, s, i) +

2(s − i + 1)

n
Q(n, s, i − 1),

which gives us

En,s+1 =
n − 2

n
En,s +

2s

n
.

Solving for En,s (using En,1 = 0), we get

En,s =
n

2

(

1 − 2

n

)s

+ s − n

2
=

n

2

s
∑

i=2

(

s

i

)

(−2

n

)i

– p. 31/38

Search

We expect to look at O
(

(g − 1)!q(g−1)(1−r)+ r+1
2

)

divisors;

each divisor takes O(g2(log q)2) bit operations.

Of these, we expect O
(

q(g−1)(1−r)+ r+1
2 /g

)

to be potentially smooth

each taking an extra O(g2(log q)2) bit operations.

We expect to also get O
(

qr− 1−r

2 /g
)

smooth divisors.

Total of O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

bit operations.

– p. 32/38

Running times

Using a smaller factor base:

1. O
(

g2q(log q)2
)

2. O
(

g4(log q)4
)

3. O
(

g2g!qg−(g−1)r(log q)2
)

4. O
(

g3q2r(log q)2
)

5. O
(

g2qr(log q)2
)

The total running time is then

O
(

g2g!qg−(g−1)r(log(q))2
)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

– p. 33/38

Running times

For the original index calculus attack by Gaudry, qr = |C(Fq)|, which
gives a running time of

O
(

g3q2+ε
)

+ O
(

g2g!q1+ε
)

bit operations.

To optimize the running time, we choose

r =
g + logq((g − 1)!)

g + 1
,

which gives us

O
(

g5q2− 2
g+1

+ε
)

bit operations.

– p. 34/38

Running times

Using a smaller factor base:

1. O
(

g2q(log q)2
)

2. O
(

g4(log q)4
)

3. O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

4. O
(

g3q2r(log q)2
)

5. O
(

g2qr(log q)2
)

The total running time is then

O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

– p. 35/38

Running times

To optimize the running time, we choose

r =
g − 1

2 + logq((g − 1)!/g)

g + 1
2

,

which gives us

O
(

g5q2− 4
2g+1

+ε
)

bit operations.

– p. 36/38

Comparison

For small genus, we have:
square original smaller with

g root index factor large
attacks calculus base primes

3 q3/2 q2 q3/2 q10/7

4 q2 q2 q8/5 q14/9

5 q5/2 q2 q5/3 q18/11

6 q3 q2 q12/7 q22/13

– p. 37/38

Memory

One of the biggest problems of the index calculus attack is the
memory requirement.

For the original index calculus: O
(

gq1+ε
)

bits.

For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

– p. 38/38

