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Two motivations
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Difficulty of DL on curves over [

Frequently asked question:

Can | trust a cryptosystem based on an elliptic curve
defined over a small/medium extension field I¥,,.?

This is very important in practice:

® Arithmetic In the finite field is fast (OEF, ...)
® Well suited to constrained environment.

® (But not present in all the standards).
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Difficulty of DL on curves over [

General Well descent attack (Frey):

® Consider the Well restriction A of £ on [;

® Find a curve C on A of genus as low as possible;
(C i1s a cover of I, that can be defined over [F,)

® Map the DLP on £ to a DLP on Jac(C);

® Use index-calculus to solve the DLP on Jac(C).
Problems:

® Finding a low genus curve C is difficult.

® The Jacobian group law for C is non trivial in general.
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Previous work in odd characteristic

The case p = 2 has been much studied, but results do not extend
easilly.

® Arita, Galbraith: Some cases In characteristic 3.

® Diem: The GHS attack in odd characteristic
® Give bounds for genus of GHS-like curves C.

® Find families of elliptic curves for which there exists a C
with low genus.

® Thériault: Weil descent attack for Kummer extensions

® Find families of elliptic and hyperelliptic curves for which
there exists a C with low genus.

® The curve C is explicitly constructed and is hyper- or
super- elliptic.
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Use Abelian varieties that are not Jacobians?

Main objection: the arithmetic is exponential in g, whereas it Is
polynomial in ¢ for Jacobians.

Abelian var. of dim g

Jac. of curve of genus g

Key size glog q glogq
Rep of elts 29 log q 2glog g
Group law (29 log q) poly(glogq)
Index Calc. O((29)1g% 27) O(g!q2_§)

For g = 1,2, 3, abelian varieties are more or less always
Jacobians of curves.

For g > 4, this Is no longer true.
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Abelian varieties of dimension 4

A possible design:

® By CM theory, build the period matrix of a dimension 4
abelian variety A;

® Find a suitable finite field, so that the group order Is
appropriate and reduce the invariants (ratios of squares of

Theta constants);

® |mplement the group law using addition law of Theta
functions;

® Hope (prove?) that there are no curve of low genus on A.
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Abelian varieties of dimension 4

It IS possible to have an exponentiation algorithm that takes
(7 x 29 — 3) logn multiplications in IF, for an exponentiation by n.

For dimension 4, this gives: 109 log n multiplications. This is very
competitive with Jacobians of hyperelliptic curves (see talk of
R. Avanzi, tomorrow).

The security is better than with a genus 4 Jacobian, since the
Index calculus does not work as well.

Question: Is this latter statment true?
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Results and ingredients
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Main result

Let £ be an elliptic curve over F,.. There exists an algorithm that
computes a discrete logarithm in £ Iin time

O ((f—%),

where the constant hidden in O() depends (exponentially) in n.

— Better than Pollard-Rho for n fixed > 3.
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Interpretation

The very bad dependance in n forces us to keep n fixed (small).
Examples:

® n =3. If 'is defined over F s, then the discrete log problem
can be solved in time O(¢*/3) ~ O(¢"*?).

® n =4. If Eis defined over F 4, then the discrete log problem
can be solved in time O(q¢"?).

Rem. These complexities were already obtained by Diem and
Thériault for special families of curves. What is new is that it is
true for all elliptic curves.
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By-product: 2nd result

Let A be an abelian variety of dimension n over I¥,. There exists
an algorithm that computes a discrete logarithm in A in time

O ((f—%),

where the constant hidden in O() depends (exponentially) in n.

This result implies the previous one by considering the Well
restriction of the elliptic curve.
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Ingredients

Index calculus: decomposition of elements of the group into
«small» elements, compatible with the group law.

SemaeVv’s «algorithm»: idea that there is no need for a
unique decomposition (before, decomposition relies on
factorization). Summations polynomials.

Weil Descent: E over F,. Is an abelian variety of dimension
n over If,.

Thériault’s algorithm and its extensions by Nagao and
G.—Thomé: use of large primes in this very particular
context.
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Introductory example
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An ECDL problem over Fyj;9

The polynomial f(¢) = ¢t + 1 is irreducible over F,, with p = 1019,
so we choose

Fe :=TF,[t]/(t* +1).

We consider E of equation y* = 2% + axz + b with a = 214 + 364t
and b = 123 + 983t.

E' 1s cyclic of order N = 1039037.

Let P and () be two random points of £

P = (401 + 517,885 + 15¢) and Q = (935 + 210¢, 740 + 617¢).

We want to compute the logarithm of () in base P in E.
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A factor basis

Rem. The word «factor» Is not well suited: decomposition basis
would be better. (see the group law on £ as a multiplication.)

Def. The factor basis Is:

F={P=(x,y) e E; vz e€F, yeclFyp}

For each z € F, the element z° + ax + b is «randoms in F 2, and
therefore is a square with probability 1/2.

We have
#JF = 1011 =~ p.
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Index calculus algorithm

® Form a linear combination of P and Q:
R=aP + 3Q, where a,5 € [0, N —1].
® Look for P, and P In F such that
R=P + P.

® |[f we find such a decomposition of R over F, we call it a
relation, that we store in the row of a matrix:

R=aP+6Q =Y mP,.
P,eF

$ After #F + 1 = 1012 relations have been found, use linear
algebra to build @ and # such that

aP + 5Q = 0.
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Decomposition of R over F — (1)

Let P, = (z1,y1) and P, = (x4, y2) be the points of F in the
decomposition that we look for.

Semaev gives a polynomial f3(x1,x2,x3) that vanishes if and only
If the z; are the abscissae of points P, whose sum vanishes in E.

Then we have to solve f;(zr,x1,22) =0, where zgp € Fp2 is
known and z; and x5 are unknowns in [F,,.

After symmetrisation e; = z1 + x2 and e = x1x9, We get:

(€2 — deg)w% — 2(e1es + aeq + 2b)xp + a® + e5 — 2aey — 4be; = 0.
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Decomposition of R over F — (2)

One equation, two unknowns.
But: the unknowns are in a subfield.

Prop. Using the explicit representation of the extension field, we
get two equations in two unknowns.

— Solvable using resultants or Grobner basis, followed by
factorization in F, | X|.
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Decomposition of R over F — (3)

Ex. Let R be the following linear combination:

R = 459328P + 313814(Q) = (415 + 211¢, 183 + 288t).

Then the equation
(€2 — des)xh — 2(e1en + aeq + 2b)xr + a” + €3 — 2aey — 4be; = 0
can be rewritten (modulo f(¢) = t? + 1) in
(881ef + 597eres + 3leq + 843es + 669) t +

(329¢% + 189¢e1e + 971e; + €2 + 294e, + 740) = 0.
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Decomposition of R over F — (4)

From that, we deduce

(61, 62) = (845, 1003),

and then
r1 = 92 and To = 1D3.

Finally, we test the possible y;, and we get

R = 459328 P + 313814Q) = P, + P»,

with
Py = (92,779 + 754t) and P, = (753,628 + 692t).
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Complexity

® Forming a linear combination of P and ¢) and testing If it IS
decomposable takes a time polynomial in log p.

® The expected number of relations given by each random
linear combination is 1/2 (independant of p).

#® Forming the matrix of relations costs O(p) polynomial time
operations.

® The linear algebra step costs O(p?) with Gauf3, O(p*) with
Wiedemann, and O(p) using the fact that there are only two
non-zero entries per row.

Thm. There exists an index calculus algorithm that can solve an
ECDLP over F,: in time O(p) up to log factors.

Rem. Same complexity as Pollard Rho.
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General algorithm
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General algorithm — (1)

We consider now a degree n extension (n Iis small).

Fpn = Fpt]/(f(2)),
with f(¢) irreducible over IF,,, of degree n.
Let & be an elliptic curve over -, and P and () two points on E.

If (z,y) € E,wenote x =x¢p+x1t+---+ r.,, 11" and
y=yo+yit+ -+ yp,—1t" 1, with z; and y; in F,,.

Def. We define a factor base as follows:

F={P=(x,y) €E, zo=x1="-=x,_9=0}.

Rem. The choice of coordinates that we annihilate is arbitrary.
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General algorithm — (2)

Prop. Under a few genericity assumptions, F is an irreducible
variety of dimension 1 (we cut an irreducible variety of dimension
n by n — 1 «randomy» hyperplanes).

Cor. By Hasse-Well theorem,
#F ~p.

We form random linear combinations R = oP + 5@, that we try to
decompose Iin the sum of n points of F.

Questions:

® expected number of relations obtained for each linear
combination

® time required for one decomposition over F.
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Decomposition

Like in the example, we reduce the problem to finding solutions of
a system of algebraic equations.

Resolution using a Grobner basis computation over IF,, followed

by a factorization of a
— Cost Is polynomia
Rem. We'll see later

polynomial in F,| X|.

In log p and exponential in n.

pounds on the degrees.

ECC 2004, Bochum — p. 27/41



Probability of finding a relation

We consider the function

f F" /G, — E
(Pl,...,Pn) — P1—|——|—Pn

The decomposition algorithm computes f~!(R) for a given R.

Hence, the expected number of relations that we find for one R Is

#f~Y(R) 1 " 1 pr 1
}%:E s —ﬁ#(}_ /Gn)f\*ﬁaf\*m-

Rem. We have neglected the terms with smaller order of
magnitude (corresponding for instance to P, = B).

ECC 2004, Bochum — p. 28/41



Complexity for fixed n

9

9

Forming a linear combination of P and () and testing if it is
decomposable over F takes a time polynomial in log p.

The expected number of relations found for each linear
combination is 1/n! (independant of p).

Forming the matrix of relations costs O(p) operations that
are polynomial-time in log p.

The (sparse) linear algebra costs O(p?) with Wiedemann.

— The total cost of the algorithm for fixed n is in O(p?).
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Use of Thériault’s algorithm — (1)

Let 0 < r < 1 be a parameter. We choose a subset 7’ of F of
cardinality p":

F cF and #F ~79p".
For the construction of the matrix, we keep only the relations that
involve n — 1 points of 7" and 1 point of F \ F’ (large prime).
Birthday paradox: If we have & such relations, we can deduce (on
average) "“?f relations involving only elements of F'.

We want to have #F’ = p" relations, we need then

14+7r

k‘:pZ

relations with a large prime.
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Use of Thériault’s algorithm — (2)

® Cost for finding a relation with large prime (n fixed):

p

® Cost for the construction of the matrix of relations over F':

—r)(n— —r)(n— T
p(t=)(n=1) — (A=) (n—1)+ 5=
® Cost of the linear algebra:
(pr)Q _ p2r.

Balancing the costs, we find r = 2"=:, and an overall cost of

4

O(p* zni1).
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Improvement to Theriault’s algorithm

ldea: Taking two large primes instead of one can only help!

The tricky part is to analyze this double-large-prime variant in a
rigourous way.

Done independently, and in different ways by Nagao and
G.—Thome.

Result: The complexity drops to O(p* = ).
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Back to the decomposition — (1)

Def. Semaev’s summation polynomials: for a given elliptic curve
F, there exist polynomials f,, that are symmetric in n variables
and that vanish exactly when evaluated at abscissae of points
whose sumis 0 in .

P1—|—P2—|—°-°—|—Pn=O<:>fn(£l?pl,£l?p2,...,iljpn)ZO.

Thm. (Semaev) For n > 3, f,, is of degree 22 in each variable.

Cor. If we write f,, In terms of the elementary symmetric
polynomials, f,, is of total degree 2”2,
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Back to the decomposition — (2)

Hence the system we have to consider in order to solve the
decomposition problem has n equations in n unknowns. Each
equation has degree 2" 1.

— we expect a degree O(2""~1) for the univariate polynomial
In a Lex Grobner basis.

Rem. If n =5, we have an ideal whose degree is about 1 million.
Rem. Forn = 3, Magma makes a decomposition in 0.1 second.
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Comparison with classical Weil Descent — (1)

(*)

G,

Map DL

— (9/8, > Jac(C)

(*)

The arrows marked by (x) are those where the index calculus

takes place.
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Comparison with classical Weil Descent - (2)

Advantages of our method:

® Does not require any knowledge of the geometry of C. No
arithmetic in its Jacobian needed.

® The factorial component in the complexity is always n!, as
compared to g!, where ¢ > n can be exponential in n.

Drawbacks of our method:

® GroObner basis are not easy to deal with.

® Dependance in n Is too bad.
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Conclusion, extensions
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Conclusion

® Algorithm in O(p?>~2/™) for ECDL over F,», with a constant
that depends exponentially in n.

® Forn = 3, we get an O(p'??) algorithm with a reasonnable

constant.
® Forn =4, we get an O(p'?) algorithm with a bad constant.
® For larger n, Just a theoretical result. .. But see Diem’s

variant!

— The elliptic curves defined over extension of small degree

> 3 are asymptotically less secure than was what previously
admitted.
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Generalisations

® This algorithm extends easily to DLP in Jacobians of
hyperelliptic curves of genus g over .. The complexity Is

O(p™ ™).

® More generally, we can give a general discrete log algorithm
for abelian varieties of dimension n over F, in time O(p2~4/").

# For instance, in the Jacobian of a genus 2 curve over [F,. we
have a discrete log algorithm in O(p'-).
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Other recent works

® Recent preprint by Arita—Matsuo—Nagao—Shimura.

They propose an attack against a very large class of elliptic
curves over I 4.

Use Scholten’s form to find a curve of genus 9 in the Well
restriction.
® Diem’s subexponential algorithm.

Use a variant of our algorithm to obtain a Ls,(n log q)
algorithm for ECDL in F», with n ~ logg.
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