# Discrete logarithm in elliptic curves over extension fields of small degree

Pierrick Gaudry

gaudry@lix.polytechnique.fr







#### **Contents**

- Two motivations
- Results and ingredients
- Introductory example
- General algorithm
- Conclusion, extensions

## Two motivations

## Difficulty of DL on curves over $\mathbb{F}_{p^n}$

#### Frequently asked question:

Can I trust a cryptosystem based on an elliptic curve defined over a small/medium extension field  $\mathbb{F}_{p^n}$ ?

#### This is very important in practice:

- Arithmetic in the finite field is fast (OEF, ...)
- Well suited to constrained environment.
- (But not present in all the standards).

## Difficulty of DL on curves over $\mathbb{F}_{p^n}$

#### General Weil descent attack (Frey):

- ullet Consider the Weil restriction A of E on  $\mathbb{F}_p$ ;
- Find a curve C on A of genus as low as possible; (C is a cover of E, that can be defined over  $\mathbb{F}_p$ )
- Map the DLP on E to a DLP on Jac(C);
- Use index-calculus to solve the DLP on Jac(C).

#### Problems:

- ullet Finding a low genus curve  $\mathcal C$  is difficult.
- ullet The Jacobian group law for  $\mathcal C$  is non trivial in general.

#### Previous work in odd characteristic

The case p=2 has been much studied, but results do not extend easily.

- Arita, Galbraith: Some cases in characteristic 3.
- Diem: The GHS attack in odd characteristic
  - ullet Give bounds for genus of GHS-like curves  $\mathcal{C}$ .
  - ullet Find families of elliptic curves for which there exists a  ${\mathcal C}$  with low genus.
- Thériault: Weil descent attack for Kummer extensions
  - ullet Find families of elliptic and hyperelliptic curves for which there exists a  $\mathcal C$  with low genus.
  - The curve C is explicitly constructed and is hyper- or super- elliptic.

#### Use Abelian varieties that are not Jacobians?

Main objection: the arithmetic is exponential in g, whereas it is polynomial in g for Jacobians.

|             | Abelian var. of dim $g$        | Jac. of curve of genus $g$ |
|-------------|--------------------------------|----------------------------|
| Key size    | $g \log q$                     | $g \log q$                 |
| Rep of elts | $2^g \log q$                   | $2g \log q$                |
| Group law   | $\Omega(2^g \log q)$           | $poly(g \log q)$           |
| Index Calc. | $O((2^g)!q^{2-\frac{2}{2^g}})$ | $O(g!q^{2-\frac{2}{g}})$   |

For g = 1, 2, 3, abelian varieties are more or less always Jacobians of curves.

For  $g \geq 4$ , this is no longer true.

#### Abelian varieties of dimension 4

#### A possible design:

- By CM theory, build the period matrix of a dimension 4 abelian variety A;
- Find a suitable finite field, so that the group order is appropriate and reduce the invariants (ratios of squares of Theta constants);
- Implement the group law using addition law of Theta functions;
- ullet Hope (prove?) that there are no curve of low genus on A.

#### Abelian varieties of dimension 4

It is possible to have an exponentiation algorithm that takes  $(7 \times 2^g - 3) \log n$  multiplications in  $\mathbb{F}_q$  for an exponentiation by n.

For dimension 4, this gives:  $109 \log n$  multiplications. This is very competitive with Jacobians of hyperelliptic curves (see talk of R. Avanzi, tomorrow).

The security is better than with a genus 4 Jacobian, since the index calculus does not work as well.

Question: is this latter statment true?

## Results and ingredients

#### Main result

Let E be an elliptic curve over  $\mathbb{F}_{q^n}$ . There exists an algorithm that computes a discrete logarithm in E in time

$$O\left(q^{2-\frac{2}{n}}\right),$$

where the constant hidden in O() depends (exponentially) in n.

 $\implies$  Better than Pollard-Rho for n fixed > 3.

## Interpretation

The very bad dependance in n forces us to keep n fixed (small). Examples:

- n=3. If E is defined over  $\mathbb{F}_{q^3}$ , then the discrete log problem can be solved in time  $O(q^{4/3}) \approx O(q^{1.33})$ .
- n=4. If E is defined over  $\mathbb{F}_{q^4}$ , then the discrete log problem can be solved in time  $O(q^{1.5})$ .

Rem. These complexities were already obtained by Diem and Thériault for special families of curves. What is new is that it is true for all elliptic curves.

## By-product: 2nd result

Let A be an abelian variety of dimension n over  $\mathbb{F}_q$ . There exists an algorithm that computes a discrete logarithm in A in time

$$O\left(q^{2-\frac{2}{n}}\right),$$

where the constant hidden in O() depends (exponentially) in n.

This result implies the previous one by considering the Weil restriction of the elliptic curve.

## **Ingredients**

- Index calculus: decomposition of elements of the group into «small» elements, compatible with the group law.
- Semaev's «algorithm»: idea that there is no need for a unique decomposition (before, decomposition relies on factorization). Summations polynomials.
- ▶ Weil Descent: E over  $\mathbb{F}_{q^n}$  is an abelian variety of dimension n over  $\mathbb{F}_q$ .
- Thériault's algorithm and its extensions by Nagao and G.–Thomé: use of large primes in this very particular context.

## Introductory example

## An ECDL problem over $\mathbb{F}_{1019^2}$

The polynomial  $f(t) = t^2 + 1$  is irreducible over  $\mathbb{F}_p$  with p = 1019, so we choose

$$\mathbb{F}_{p^2} := \mathbb{F}_p[t]/(t^2+1).$$

We consider E of equation  $y^2 = x^3 + ax + b$  with a = 214 + 364t and b = 123 + 983t.

E is cyclic of order  $N=1\,039\,037$ .

Let P and Q be two random points of E:

$$P = (401 + 517t, 885 + 15t)$$
 and  $Q = (935 + 210t, 740 + 617t)$ .

We want to compute the logarithm of Q in base P in E.

#### A factor basis

**Rem.** The word «factor» is not well suited: decomposition basis would be better. (see the group law on E as a multiplication.)

**Def.** The factor basis is:

$$\mathcal{F} = \{ P = (x, y) \in E; \ x \in \mathbb{F}_p, \ y \in \mathbb{F}_{p^2} \}.$$

For each  $x \in \mathbb{F}_p$ , the element  $x^3 + ax + b$  is «random» in  $\mathbb{F}_{p^2}$ , and therefore is a square with probability 1/2.

We have

$$\#\mathcal{F} = 1011 \approx p$$
.

### Index calculus algorithm

ullet Form a linear combination of P and Q:

$$R = \alpha P + \beta Q$$
, where  $\alpha, \beta \in_R [0, N-1]$ .

**•** Look for  $P_1$  and  $P_2$  in  $\mathcal{F}$  such that

$$R = P_1 + P_2.$$

• If we find such a decomposition of R over  $\mathcal{F}$ , we call it a relation, that we store in the row of a matrix:

$$R = \alpha P + \beta Q = \sum_{P_i \in \mathcal{F}} m_i P_i.$$

• After  $\#\mathcal{F}+1=1012$  relations have been found, use linear algebra to build  $\overline{\alpha}$  and  $\overline{\beta}$  such that

$$\overline{\alpha}P + \overline{\beta}Q = 0.$$
 ECC 2004, Bochum – p. 18/41

## Decomposition of R over $\mathcal{F}$ – (1)

Let  $P_1 = (x_1, y_1)$  and  $P_2 = (x_2, y_2)$  be the points of  $\mathcal{F}$  in the decomposition that we look for.

Semaev gives a polynomial  $f_3(x_1, x_2, x_3)$  that vanishes if and only if the  $x_i$  are the abscissae of points  $P_i$  whose sum vanishes in E.

Then we have to solve  $f_3(x_R, x_1, x_2) = 0$ , where  $x_R \in \mathbb{F}_{p^2}$  is known and  $x_1$  and  $x_2$  are unknowns in  $\mathbb{F}_p$ .

After symmetrisation  $e_1 = x_1 + x_2$  and  $e_2 = x_1x_2$ , we get:

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1e_2 + ae_1 + 2b)x_R + a^2 + e_2^2 - 2ae_2 - 4be_1 = 0.$$

## Decomposition of R over $\mathcal{F}$ – (2)

One equation, two unknowns.

But: the unknowns are in a subfield.

**Prop.** Using the explicit representation of the extension field, we get two equations in two unknowns.

 $\Longrightarrow$  Solvable using resultants or Gröbner basis, followed by factorization in  $\mathbb{F}_p[X]$ .

## Decomposition of R over $\mathcal{F}$ – (3)

#### $\mathbf{Ex.}$ Let R be the following linear combination:

$$R = 459328P + 313814Q = (415 + 211t, 183 + 288t).$$

#### Then the equation

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1e_2 + ae_1 + 2b)x_R + a^2 + e_2^2 - 2ae_2 - 4be_1 = 0$$

can be rewritten (modulo  $f(t) = t^2 + 1$ ) in

$$(881e_1^2 + 597e_1e_2 + 31e_1 + 843e_2 + 669) t +$$

$$(329e_1^2 + 189e_1e_2 + 971e_1 + e_2^2 + 294e_2 + 740) = 0.$$

## Decomposition of R over $\mathcal{F}$ – (4)

From that, we deduce

$$(e_1, e_2) = (845, 1003),$$

and then

$$x_1 = 92$$
 and  $x_2 = 753$ .

Finally, we test the possible  $y_i$ , and we get

$$R = 459328P + 313814Q = P_1 + P_2,$$

with

$$P_1 = (92,779 + 754t)$$
 and  $P_2 = (753,628 + 692t)$ .

## **Complexity**

- Forming a linear combination of P and Q and testing if it is decomposable takes a time polynomial in  $\log p$ .
- The expected number of relations given by each random linear combination is 1/2 (independent of p).
- ullet Forming the matrix of relations costs O(p) polynomial time operations.
- The linear algebra step costs  $O(p^3)$  with Gauß,  $O(p^2)$  with Wiedemann, and O(p) using the fact that there are only two non-zero entries per row.

**Thm.** There exists an index calculus algorithm that can solve an ECDLP over  $\mathbb{F}_{p^2}$  in time O(p) up to log factors.

Rem. Same complexity as Pollard Rho.

## General algorithm

## General algorithm -(1)

We consider now a degree n extension (n is small).

$$\mathbb{F}_{p^n} = \mathbb{F}_p[t]/(f(t)),$$

with f(t) irreducible over  $\mathbb{F}_p$ , of degree n.

Let E be an elliptic curve over  $\mathbb{F}_{p^n}$ , and P and Q two points on E.

If  $(x, y) \in E$ , we note  $x = x_0 + x_1t + \cdots + x_{n-1}t^{n-1}$  and  $y = y_0 + y_1t + \cdots + y_{n-1}t^{n-1}$ , with  $x_i$  and  $y_i$  in  $\mathbb{F}_p$ .

**Def.** We define a factor base as follows:

$$\mathcal{F} = \{ P = (x, y) \in E, \ x_0 = x_1 = \dots = x_{n-2} = 0 \}.$$

Rem. The choice of coordinates that we annihilate is arbitrary.

## General algorithm – (2)

**Prop.** Under a few genericity assumptions,  $\mathcal{F}$  is an irreducible variety of dimension 1 (we cut an irreducible variety of dimension n by n-1 «random» hyperplanes).

Cor. By Hasse-Weil theorem,

$$\#\mathcal{F} \approx p$$
.

We form random linear combinations  $R = \alpha P + \beta Q$ , that we try to decompose in the sum of n points of  $\mathcal{F}$ .

#### **Questions:**

- expected number of relations obtained for each linear combination
- ullet time required for one decomposition over  $\mathcal{F}$ .

## **Decomposition**

Like in the example, we reduce the problem to finding solutions of a system of algebraic equations.

Resolution using a Gröbner basis computation over  $\mathbb{F}_p$ , followed by a factorization of a polynomial in  $\mathbb{F}_p[X]$ .

 $\longrightarrow$  Cost is polynomial in  $\log p$  and exponential in n.

Rem. We'll see later bounds on the degrees.

## Probability of finding a relation

We consider the function

$$f: \mathcal{F}^n/\mathfrak{S}_n \longrightarrow E$$
  
 $(P_1, \dots, P_n) \mapsto P_1 + \dots + P_n$ 

The decomposition algorithm computes  $f^{-1}(R)$  for a given R. Hence, the expected number of relations that we find for one R is

$$\sum_{R \in E} \frac{\#f^{-1}(R)}{\#E} = \frac{1}{\#E} \#(\mathcal{F}^n/\mathfrak{S}_n) \approx \frac{1}{p^n} \frac{p^n}{n!} \approx \frac{1}{n!}.$$

**Rem.** We have neglected the terms with smaller order of magnitude (corresponding for instance to  $P_1 = P_2$ ).

## Complexity for fixed n

- Forming a linear combination of P and Q and testing if it is decomposable over  $\mathcal{F}$  takes a time polynomial in  $\log p$ .
- The expected number of relations found for each linear combination is 1/n! (independent of p).
- Forming the matrix of relations costs O(p) operations that are polynomial-time in  $\log p$ .
- The (sparse) linear algebra costs  $O(p^2)$  with Wiedemann.
- $\longrightarrow$  The total cost of the algorithm for fixed n is in  $O(p^2)$ .

## Use of Thériault's algorithm – (1)

Let 0 < r < 1 be a parameter. We choose a subset  $\mathcal{F}'$  of  $\mathcal{F}$  of cardinality  $p^r$ :

$$\mathcal{F}' \subset \mathcal{F}$$
 and  $\#\mathcal{F}' \approx p^r$ .

For the construction of the matrix, we keep only the relations that involve n-1 points of  $\mathcal{F}'$  and 1 point of  $\mathcal{F} \setminus \mathcal{F}'$  (large prime).

Birthday paradox: If we have k such relations, we can deduce (on average)  $\frac{k^2}{p}$  relations involving only elements of  $\mathcal{F}'$ .

We want to have  $\#\mathcal{F}'=p^r$  relations, we need then

$$k = p^{\frac{1+r}{2}}$$

relations with a large prime.

## Use of Thériault's algorithm – (2)

Cost for finding a relation with large prime (n fixed):

$$\left(\frac{p}{p^r}\right)^{n-1} = p^{(1-r)(n-1)}.$$

ullet Cost for the construction of the matrix of relations over  $\mathcal{F}'$ :

$$kp^{(1-r)(n-1)} = p^{(1-r)(n-1) + \frac{1+r}{2}}.$$

Cost of the linear algebra:

$$(p^r)^2 = p^{2r}.$$

Balancing the costs, we find  $r = \frac{2n-1}{2n+1}$ , and an overall cost of

$$O(p^{2-\frac{4}{2n+1}}).$$

## Improvement to Thériault's algorithm

Idea: Taking two large primes instead of one can only help!

The tricky part is to analyze this double-large-prime variant in a rigourous way.

Done independently, and in different ways by Nagao and G.-Thomé.

Result: The complexity drops to  $O(p^{2-\frac{2}{n}})$ .

## Back to the decomposition – (1)

**Def.** Semaev's summation polynomials: for a given elliptic curve E, there exist polynomials  $f_n$  that are symmetric in n variables and that vanish exactly when evaluated at abscissae of points whose sum is 0 in E.

$$P_1 + P_2 + \dots + P_n = 0 \iff f_n(x_{P_1}, x_{P_2}, \dots, x_{P_n}) = 0.$$

Thm. (Semaev) For  $n \geq 3$ ,  $f_n$  is of degree  $2^{n-2}$  in each variable.

Cor. If we write  $f_n$  in terms of the elementary symmetric polynomials,  $f_n$  is of total degree  $2^{n-2}$ .

## Back to the decomposition – (2)

Hence the system we have to consider in order to solve the decomposition problem has n equations in n unknowns. Each equation has degree  $2^{n-1}$ .

 $\longrightarrow$  we expect a degree  $O(2^{n(n-1)})$  for the univariate polynomial in a Lex Gröbner basis.

**Rem.** If n = 5, we have an ideal whose degree is about 1 million.

**Rem.** For n=3, Magma makes a decomposition in 0.1 second.

## **Comparison with classical Weil Descent – (1)**



The arrows marked by (\*) are those where the index calculus takes place.

## Comparison with classical Weil Descent – (2)

#### Advantages of our method:

- ullet Does not require any knowledge of the geometry of  $\mathcal{C}$ . No arithmetic in its Jacobian needed.
- The factorial component in the complexity is always n!, as compared to g!, where  $g \ge n$  can be exponential in n.

#### Drawbacks of our method:

- Gröbner basis are not easy to deal with.
- ullet Dependance in n is too bad.

## Conclusion, extensions

#### **Conclusion**

- Algorithm in  $O(p^{2-2/n})$  for ECDL over  $\mathbb{F}_{p^n}$ , with a constant that depends exponentially in n.
- **▶** For n = 3, we get an  $O(p^{1.33})$  algorithm with a reasonnable constant.
- For n=4, we get an  $O(p^{1.5})$  algorithm with a bad constant.
- For larger n, just a theoretical result... But see Diem's variant!
- The elliptic curves defined over extension of small degree  $\geq 3$  are asymptotically less secure than was what previously admitted.

#### Generalisations

- This algorithm extends easily to DLP in Jacobians of hyperelliptic curves of genus g over  $\mathbb{F}_{p^n}$ . The complexity is  $O(p^{2-\frac{2}{ng}})$ .
- More generally, we can give a general discrete log algorithm for abelian varieties of dimension n over  $\mathbb{F}_p$  in time  $O(p^{2-4/n})$ .
- For instance, in the Jacobian of a genus 2 curve over  $\mathbb{F}_{p^2}$  we have a discrete log algorithm in  $O(p^{1.5})$ .

#### Other recent works

- Pecent preprint by Arita–Matsuo–Nagao–Shimura. They propose an attack against a very large class of elliptic curves over  $\mathbb{F}_{q^4}$ .
  - Use Scholten's form to find a curve of genus 9 in the Weil restriction.
- Diem's subexponential algorithm. Use a variant of our algorithm to obtain a  $L_{3/4}(n \log q)$  algorithm for ECDL in  $\mathbb{F}_{q^n}$ , with  $n \sim \log q$ .