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Abstract
In this paper, we propose new website fingerprinting
techniques that achieve a higher classification accuracy
on Tor than previous works. We describe our novel
methodology for gathering data on Tor that enhances the
quality of classifier comparison and analysis. We offer
new ways to interpret the data by using the more fun-
damental Tor cells as a unit of data rather than TCP/IP
packets. We demonstrate an experimental method to re-
move Tor SENDMEs, which are control cells that pro-
vide no useful data, in order to improve accuracy. We
also propose a new set of metrics to describe the similar-
ity between two traffic instances; they are derived from
observations on how a site is loaded. Using our new met-
rics we achieve a higher success rate than previous au-
thors. To identify the potential power of censorship on
Tor, we perform open-world experiments; we achieve a
recall rate over 95% and a false positive rate under 0.06%
for several potentially censored sites, which is signifi-
cantly more accurate than previous techniques. In the
closed-world experiments, our success rate is 90–91%,
as compared to 86–87% from previous classifiers on the
same data.

1 Introduction

When browsing the web, clients inadvertently reveal
their destination websites to a number of routers along
the way. These routers may passively observe and collect
information on client behaviour (such as an ISP who may
wish to sell this data to marketers), and they may aggres-
sively attack the client’s communication by censoring
specific sites or certain types of behaviour [3]. Anony-
mous communication networks can protect the client
from such threats by preserving the client’s privacy. Tor
is a popular anonymous communication network used by
around 500,000 people per day [14]. To disassociate the
client’s identity from her destination, Tor routes her com-
munication through a number of volunteer relays using

multiple layers of encryption. The client’s identity and
her destination will not both be revealed to any single
relay. However, an attacker can still attempt to compro-
mise a web-browsing client’s privacy by observing pat-
terns in her sequence of packets, even assuming that the
encryption leaks no extra information, using a technique
known as website fingerprinting. A site may prove to be
uniquely identifiable from the order, direction, and size
of the packets used to load the site, allowing a client-
side observer to identify a Tor web client’s destination
server, thus violating the privacy one might expect from
Tor. The objective of this paper is to demonstrate that
these techniques may be more powerful against Tor than
previously thought. Our strong open-world experimental
results demonstrate that an attacker can potentially mon-
itor or block accesses to a specific site in Tor with very
high accuracy.

To attack a Tor-using client, the attacker gathers traf-
fic information about sites the client might visit by ac-
cessing these sites over Tor and recording the result-
ing packet sequences. We call the traffic record corre-
sponding to a single visit to each site a “traffic instance”.
The attacker then taps the encrypted connection of the
client and compares the client’s traffic instance with the
attacker’s recorded traffic instances. In this paper, we
focus on distance-based metrics the attacker can use to
compare traffic instances. A distance-based metric is a
function, which, given two traffic instances, produces a
value that describes how similar those two instances are.
This measure of similarity can be used in Support Vec-
tor Machines (SVMs) to classify traffic instances into
classes corresponding to the site from which they were
collected [2,11]. We focus on distance-based metrics be-
cause in previous works, distance-based metrics offered
better results than non-distance-based metrics [5]. They
are a natural way to measure similarity, and they are easy
to modify. We compare previous results using these two
types of metrics in Section 2.
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Tor has proven to be relatively resilient to website fin-
gerprinting [6] as compared to other privacy technologies
such as IPsec and SSH tunnels. The following factors
contribute to Tor’s defenses. First, Tor transfers data in
units of 512 bytes, called cells, and Tor always pads all
data transfers up to a cell boundary. This covers up iden-
tifiable packet lengths that are often unique to a given
website [7]. Second, Tor clients transfer information
on randomly chosen, short-lived circuits of three relays.
Clients using different circuits may experience signifi-
cantly different performance, in terms of latency, conges-
tion, and bandwidth capacity [14]. These factors induce
different sequences of packets for the same site, lowering
fingerprinting accuracy. Third, Tor performs a number of
background activities, such as circuit construction, cir-
cuit speed testing, flow control using SENDME packets,
and so on. These activities may pollute the data if not
filtered out. Finally, Tor uses pipelining and order ran-
domization to add variance to the network traffic from a
site. We give an overview of Tor, focusing on the aspects
that impact website fingerprinting, in Section 3.

Our contributions
Improved data gathering. We describe how we collect

our data in a more thorough manner than previous
works. We take precautions to collect the data in
the same way a realistic attacker would. We collect
a new set of data that offers a fair comparison for
classifier analysis. Our data collection methodology
is described in Section 4.1.

New data processing. We make the key observation
that we can exploit knowledge of Tor’s inner work-
ings in order to analyze its traffic more accurately
than previous works. Instead of using TCP/IP pack-
ets, which are merely capsules used to transport Tor
cells, we parse the packet data to obtain the under-
lying Tor cells. We are able to achieve better accu-
racy by using Tor cell sequences instead of TCP/IP
packet sequences to train a classifier. We also at-
tempt to identify the SENDME cells in Tor, which
provide no extra information, and remove them to
decrease noise. This is described in Section 4.2.

New website fingerprinting metrics. We demonstrate
that we can achieve better accuracy with metrics
that incorporate important observations on website
fingerprinting. The observations include: dynamic
content such as advertisements may cause a varia-
tion in incoming packets but not outgoing packets,
and dynamic content is often loaded last in a web-
site. These metrics are used to train a Support Vec-
tor Machine to achieve a higher accuracy. We de-
scribe the Support Vector Machine and present our
new metrics in Section 5.

We conduct a series of open-world and closed-world ex-
periments to validate our claims that these techniques
achieve better accuracy, and they are presented in Sec-
tion 6. We discuss our results in Section 7, and we con-
clude in Section 8.

2 Related Work

A number of attacks have been proposed for website fin-
gerprinting. An attack generally consists of a way to pro-
cess each training traffic instance to extract useful infor-
mation, followed by a classification mechanism to iden-
tify a testing traffic instance. We outline related work on
website fingerprinting attacks below. For our purposes,
they can be divided into two classes: non-distance-based
methods, and distance-based methods.

Defenses. We briefly note that while many interest-
ing defenses have been suggested to counter these at-
tacks [11, 18], they are not implemented in Tor because
of their additional network load [12], which is a bottle-
neck in Tor [13]. Previous work has indeed shown that
a number of known website fingerprinting defense tech-
niques are either ineffective or inefficient [5].

2.1 Non-distance-based methods

In 2005, Liberatore and Levine [7] published two meth-
ods for “inferring the source of encrypted HTTP connec-
tions”. The authors used the lengths of incoming and
outgoing TCP/IP packets and discarded the order. Test-
ing instances were classified with a Naı̈ve Bayes classi-
fier, based on packet lengths. The probability of an ob-
served traffic instance belonging to a given class (rep-
resenting one site) is computed from the product of the
probabilities of the observed packet lengths occurring at
their observed frequencies. The probability of a packet
length occurring at a given frequency for a specific class
is computed from a normal distribution determined by
each training instance in that class. This method was
shown to be quite effective on plain encryption (a client
using a simple SSH tunnel, for example). Liberatore and
Levine did not report the accuracy of their classifier on
Tor.

Herrmann et al. [6] in 2009 described an improved
method that gave a higher accuracy than Liberatore and
Levine under comparable conditions. They described
their method as an application of known text mining
techniques to website fingerprinting. The classifier they
used for training was the Multinomial Naı̈ve Bayes clas-
sifier. As before, the order of packets was discarded,
and only lengths and frequencies were used. The Multi-
nomial Naı̈ve Bayes classifier does not learn a normal
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distribution over possible frequencies of certain packet
lengths. Instead, this frequency is used as an exponent
to the relevant probability value. They applied a set
of well-known text mining transformations to optimize
their classifier. Herrmann et al. demonstrated that their
algorithm achieves a higher success rate than Liberatore
and Levine’s algorithm on simple encryption. However,
they also showed that its accuracy on Tor is only 3%.
This indicates that website fingerprinting on Tor poses a
greater challenge than plain encryption.

2.2 Distance-based methods

Besides the Naı̈ve Bayes classifier, Liberatore and
Levine also proposed using the Jaccard coefficient for
classification [7]. For two sets of packet lengths, the Jac-
card coefficient is a ratio of the size of their intersection
to the size of their union. This coefficient was shown to
be less effective than the Naı̈ve Bayes classifier; it only
considers packet lengths and does not consider the fre-
quency in which they appear.

In 2011, Panchenko et al. [11] used a Support Vec-
tor Machine (SVM) to perform website fingerprinting
specifically on onion-routing anonymity networks (such
as Tor) using a variety of features. Features of two traf-
fic instances induce a distance between them, based on
how different those features are, which is used to de-
cide whether or not these instances belong to the same
site. These features include the total size of all pack-
ets in each direction, the size of the HTML document,
the total number of transmitted bytes, markers for indi-
cating direction changes in packet order, the percentage
of incoming bytes, and more. Order is used in classifi-
cation, unlike the non-distance-based methods described
above. The authors performed separate open-world and
closed-world experiments. In the open-world experi-
ments, which simulated internet censorship, the attacker
gathered a number of traffic instances of 5 specific cen-
sored sites and 1 instance each from a large set of 4000
uncensored sites; the simulated client could choose a
censored site or one from another set of 1000 uncensored
sites. In the closed-world experiments, the attacker gath-
ered a number of traffic instances from a limited set of
sites and the client was only allowed to choose among
those sites. They achieved a recall of 73% with a false
positive rate of 0.05% in the open-world model and an
accuracy of 54% in the closed-world model for Alexa’s
top-ranked pages.

In 2012, Cai et al. [2] proposed using a different met-
ric to achieve better results than Panchenko et al. They
used the optimal string alignment distance, which is de-
scribed in more detail in Section 5.2. They were able to
achieve a higher accuracy of 87.3% in the closed-world
model, although there are no open-world results. We

supplement open-world results in this paper for our met-
rics and theirs. They also described how they can use
Hidden Markov Models to classify web sites instead of
web pages.1

3 Tor

In this section, we briefly describe Tor, focusing on as-
pects which are relevant to website fingerprinting.

Tor is a popular anonymity network, currently used by
around 500,000 daily clients and carrying 2000 MB of
data per second [14]. Tor consists of around 3000 vol-
unteer relays, which are routers that volunteer to relay
information for Tor clients. Clients build circuits, con-
sisting of three relays, to communicate with destination
websites. Tor uses TLS to communicate between relays.
Each connection to a destination server is represented
as a stream in Tor, which is multiplexed in Tor’s cir-
cuits. We give more details on circuits and streams in
Section 3.1.

Tor seeks to protect clients’ anonymity. If website fin-
gerprinting is accurate, however, then Tor cannot protect
client anonymity against an attacker who is able to mon-
itor the connection between the client and the first re-
lay of the Tor circuit (called the entry guard). Further-
more, as Tor relays are operated by volunteers with no
presumption of trust, they may act as attackers as well.
Tor has implemented a pipelining and order randomiza-
tion defense to protect itself against website fingerprint-
ing; more details are given in Section 3.2.

3.1 Circuits and Streams
When using Tor, a client picks three relays: the entry
guard, the middle relay, and the exit relay. The client
constructs a circuit through these three relays, and uses
that circuit for about ten minutes before switching to a
new circuit. To limit the rate of deanonymization, each
client keeps a list of three entry guards it will use for 30–
60 days, while the middle and exit relays are chosen ran-
domly for each circuit, weighted chiefly by bandwidth
for load balancing. As relay bandwidth ranges over more
than three orders of magnitude, the random selection of
relays causes variance in Tor’s performance, which im-
pacts our attacker’s data collection. We deal with this
problem in detail in Section 4.1.

Once a circuit has opened, the client communicates
through the circuit using a number of streams. Each
stream corresponds to a separate TCP connection at the
exit relay, and streams are multiplexed in a circuit. A
client may open many streams to load a single site. Using

1We do not attempt to re-engage the problem of classifying web
sites instead of web pages, and in this work, our use of the words “site”
and “website” refer to a single web page.
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persistent HTTP connections, more than one resource
from the same server can be downloaded through each
stream.

Tor uses a number of control cells to communicate
commands among relays and the Tor client. These con-
trol cells may include circuit construction and closing
cells, stream open and closing cells, flow control cells
and cells used to transmit network information. Tor uses
the SENDME control cell to perform flow control [4].
A circuit-level SENDME cell is sent every 100 cells per
circuit, and a stream-level SENDME cell is sent every
50 cells per stream. While the attacker is collecting data
for website fingerprinting, those cells will be included in
the traffic instance. If the attacker can identify them un-
der the encryption, SENDME cells should be removed as
they provide no extra information, just as ACK packets
should be removed from captures at the TCP/IP level.

3.2 Defenses

In response to the first successful website fingerprinting
attack on Tor by Panchenko et al. [11], Tor developers
have implemented an experimental defense against web-
site fingerprinting [12]. This defense has three compo-
nents: HTTP pipelining is enabled so that multiple re-
quests can be made on a single stream without having
to wait for each to finish; the pipeline size is random-
ized; and the order of requests is randomized. This de-
fense does not significantly impact the total size of the
transmission. The Tor developers did not test the effec-
tiveness of this defense, and no additional defenses have
been implemented yet. Cai et al. showed that the defense
is ineffective [2] against both their strategy and that pro-
posed by Panchenko et al. We analyze this defense on
our metrics as well.

4 Data Collection and Processing

4.1 Collecting Data

Previous website fingerprinting works generally did not
go into detail on the problem of data collection on Tor.
Tor is a live network with ever-changing performance,
and different clients may have entirely different experi-
ences. Precautions need to be taken in order to ensure
that data is collected the same way a realistic attacker
would. With our new methodology, we collect a set of
data for our experiments. In this section we specify ex-
actly how we collect the data while addressing issues
in circuit construction, timing, and website localization.
We will later compare different website fingerprinting
techniques using this data set.

4.1.1 Circuit Construction

Tor relays have a wide range of bandwidths. As of Jan-
uary 2013, the top 1% of relays comprised 34% of the to-
tal bandwidth of Tor and the top 20% of relays comprised
92% of the bandwidth. Bandwidth and congestion will
affect the sequence of packets received by the client, so
that traffic instances collected using the same circuit are
more similar than those collected using different circuits.
We assume that the attacker can observe the client’s net-
work traffic, but cannot control or observe which Tor cir-
cuits the client is using (this is a basic assumption neces-
sary for the privacy guarantees of Tor [4]). We must nat-
urally ensure that we never use the same circuit for both
training and testing in our experiments, as that would
give an unrealistic advantage to the attacker.

By default, Tor can only use a circuit for up to ten
minutes, after which Tor will not launch new connec-
tions on the circuit. If this setting is maintained, and if
sites are visited in sequence, then instances of the same
site are more likely to be accessed with the same circuit,
while instances of different sites are more likely to be
accessed with different circuits, which is another unreal-
istic advantage to the attacker. The inherent difference
of circuits imposes a difference upon the traffic instances
of different sites, which could help the machine learn-
ing algorithm separate them. We should not allow Tor to
automatically close its circuits every ten minutes.

4.1.2 Timing

A site’s content may change over time. A news site, for
example, would not have the same content every day; it
may have different images and different text, and perhaps
even a different number of resources. We find that, in our
metrics, processing the data to train the classifier could
take more than two hundred CPU hours, whereas news
sites could be updated every few minutes. Therefore, we
cannot expect the attacker to keep up with ever-changing
content. The attacker and client should train on sites that
are loaded at least several hours apart.

4.1.3 Localization

Depending on the location of the exit relay, a site
could present entirely different data. This is known
as website localization and it is especially prevalent
among popular sites, such as www.google.com and
www.yahoo.com. Roughly speaking, there are two
types of website localization that are of concern to us.
The first type is redirection: a Canadian client attempt-
ing to access www.google.com will be redirected to
www.google.ca by Google—the site that the client
is actually accessing is different depending on locality.
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The second type involves content changes: a German ad-
vertisement may be shown to a person connecting from
Germany or a Tor client exiting from Germany, but it is
unlikely for other clients to see the German advertise-
ment. This does not involve redirection. When Tor is
used, the locality of the client is determined by the lo-
cation of the exit relay, and is thus dependent on what
circuit the client is using. Tor does not attempt to choose
the exit relay based on the client’s location (to protect the
client’s privacy).

4.1.4 Our Methodology

We use a Tor controller [9] to gain full control over cir-
cuit construction. Our circuits are built according to
Tor’s algorithm, which chooses relays with a probability
depending on their observed bandwidths. While clients
can change this algorithm, it is not easy or encouraged
to do so and thus we assume the client uses Tor with no
modifications.

Our main data set consists of 40 traffic instances for
each of 100 sites (other data sets we use for specific ex-
periments are detailed in Section 6). To deal with cir-
cuit and timing issues, we collect our traffic instances in
batches. Each batch consists of 4 traffic instances; they
are each collected a few hours apart using different cir-
cuits. We later perform 10-fold cross validation, so that
training instances are never collected from the same cir-
cuit used to collect the testing instances. We maximize
Tor’s permissiveness for circuit dirtiness (so Tor can keep
using the same circuit), and we use each circuit as long
as possible. As different circuits are used for training and
testing, it is more difficult for the attacker to use timing
information to attack the client.

The data set we use is based on Alexa’s top sites,2

modified to to avoid localization redirection, in order to
ensure that traffic instances from the same site were con-
sistent. We modified the top sites list in two steps. First,
if a single site occurred many times under different lo-
calization instances in the list, we removed all repeated
occurrences of it. In particular, different localizations of
www.google.com occurred many times in the top 100
sites list, and all had similar traffic patterns. A classifier
would not be expected to distinguish them, and a cen-
sor who may wish to block Google’s search engine as a
whole would not need to separate two different localiza-
tions of the site in any event. Second, whenever possible,
we attempted to specify the localization version of a site
we wanted to visit. That is to say, we did not attempt to
visit www.yahoo.com; instead, we attempted to visit
www.yahoo.de. This avoided localization redirection
from various sites. Modification of the top sites list was

2http://www.alexa.com/topsites

done manually.3 Our data was collected batch-by-batch,
with each batch corresponding to one circuit (one client);
each batch took around 4 hours and was separated from
each other by around 4–12 hours.

We checked the size of all traffic instances. If the size
of the traffic instance was less than 20% of the median
size for that site, it was removed. These traffic instances
are regarded as failed instances, which may be a failed
connection to the server or a server-originated message
that denied access to the client.

We did not attempt to control dynamic content
changes based on client locality, such as advertisements.
Furthermore, server-side caching of client settings may
affect the content for clients using exit relays that have
accessed those sites. We could limit the locality of the
exit relays, but this would limit our selection of circuits.
Our choices mean our results should more accurately re-
flect live conditions, where an attacker cannot account
for such differences in content.

4.2 Processing Data

Once the attacker collects the traffic data (either the train-
ing or testing data), some processing may be done before
using it to classify the site. After processing, each traf-
fic instance is represented as a sequence of positive and
negative integers. We describe three ways to process the
data before using it as input to the SVM.

4.2.1 TCP/IP packet instances

A TCP/IP packet header contains the length of the given
packet, which was used by previous authors [2, 11] to
represent the packet. This length often ranges from 0
(an ACK) to 1448 for ethernet. Previous authors dis-
carded ACK packets as they provide no useful informa-
tion, and removing it increased the accuracy of their clas-
sifier. TCP/IP does not attempt to pad these packets when
there is not enough data, but it attempts to send packets
of the maximum segment size (MSS), which is 1448 for
Ethernet. Packet lengths are viewed as a sequence of
integers in order. Outgoing packets are represented as
positive integers while incoming packets are represented
as negative integers. Cai et al. also rounded the packet
sizes up by increments of 600. For example, one GET re-
quest would be classified as 600, a SENDME and a GET
request sent together would be 1200, and MSS packets
on Ethernet would be 1800 (incoming packets are often
MSS packets). This strategy offers a distinction between
these types of packets. This is similar to a strategy used

3We also removed tumblr.com from the list as it was unusually
large (around 10 MB). This site impacted our processing time and does
not impact our classifier comparison, as it was very easy to identify
from its size alone.
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by Panchenko et al. They round the total size of all pack-
ets in a traffic instance by increments of 600 and use it
as a feature. We compare this data processing method to
our new ones, which are below.

4.2.2 Tor cell instances

We experiment with extracting Tor cells directly. The
Tor cell is a more consistent and basic unit than TCP/IP
packets. For instance, TCP/IP packet retransmissions
would produce duplicate entries in traffic instances pro-
cessed as above, but not when we reconstruct the TCP
streams, parse the TLS layer, and extract the cell counts.
As the choice of circuits affects timing, we should re-
move timing-dependent factors from our data. Tor cells
cannot be broken down or combined together by relays
or routers in the middle, unlike TCP/IP packets. Tor cells
are always padded to a constant size, while the sizes of
TCP/IP packets can change based on the connection.

Tor encrypts its data in Transport Layer Security
(TLS) records, which always contain a number of com-
plete Tor cells. TLS is designed to encrypt information
on the socket layer to prevent eavesdropping, message
forgery, or tampering on the internet. As such, it operates
independently of TCP/IP, and thus a TLS record could
be contained in parts of one or several TCP/IP packets.
There are three types of TLS records: data records, hand-
shake records and alerts. TLS data records begin with
one byte for type (17 for application data), followed by
two bytes of the version (0301, TLS version 1, is used by
Tor), followed by two bytes representing the length. We
ignore TLS handshakes and alerts.

Parsing TCP/IP data allows the attacker to reconstruct
full TLS records with their lengths. We are able to re-
construct these records while discarding retransmitted
TCP/IP packets. We denote each size as positive if it
is outgoing and negative if it is incoming. We round
these record lengths down, to the closest multiple of 512,
and then divide by 512. Each TLS record may contain a
number of complete Tor cells (or none), and this method
will produce the number of Tor cells in the record. The
rounding accounts for the extra data in the record, such as
encryption and MAC overhead, and empty TLS records
used to defend against the BEAST attack [8].

We demonstrate with the following example. Consider
a sequence with three TLS records of size 544, -1088,
1088. This sequence will be represented as 1, -1, -1, 1, 1
in the Tor cell instances. Each cell is recorded separately,
so Tor cell instances only contain the integers 1 and -1.

4.2.3 Removing SENDMEs

As described in Section 3, Tor issues a circuit-level
SENDME cell every 100 cells on each circuit and
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Figure 1: ROC to evaluate True Positive Rate and False
Positive Rate with our experimental SENDME removal
methodology

a stream-level SENDME cell every 50 cells on each
stream. We attempt to automatically remove these cells
as they provide us with no information.

We remove SENDMEs with the following method.
We scan through each traffic instance with a running
counter of incoming cells. When the counter reaches
some amount p1, the next outgoing cell is guessed to
be a SENDME. Then, the counter is decreased by some
amount p2 (the counter can become negative). We col-
lect data to evaluate this scheme by instrumenting Tor to
mark SENDME cells on 100 traffic instances. The re-
sults are presented as a receiver operating characteristic
curve (ROC) in Figure 1. The false positive rate is taken
over all outgoing packets, which is much greater than the
total number of SENDMEs. The area under the curve, as
a sum of trapezoids, is 0.88.

Specifically, for our experiments, we choose the pa-
rameters p1 = 45 and p2 = 40, which offers a true posi-
tive rate of 62% and a false positive rate of 5.7%. In our
data set, around 19% of all outgoing packets (2.1% of all
packets) were removed this way.

5 Classification

Our website fingerprinting problem can be viewed as
a machine classification problem. Each class can be a
group of sites, such as “Censored” or “Permitted” (in
the open-world scenario) or a specific site (in the closed-
world scenario). Given a sequence of packets collected
from one access of a site, the classifier attempts to cat-
egorize the testing instance into one of the available
classes. To do so, the classifier first learns about each
class by training on a number of training instances. We
next discuss the SVM classifier we use to tackle the clas-
sification problem, and then discuss how we construct
the kernel used in the SVM.
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5.1 Support Vector Machine
The Support Vector Machine (SVM), proposed by Vap-
nik and Chervonenkis [15], is a classifier that was used
by previous authors for website fingerprinting [2, 11]
and was shown to be fairly successful. We there-
fore use SVMs for our experiments as well. During
training, SVMs take in a number of features, ~fs =
{f1, f2, . . . , fF }, for each training instance s. Each
training instance can then be considered a point in F -
dimensional space belonging to a certain class. Consider
the simplest case, with only two classes. If the points
can be separated by a hyperplane, then the SVM finds
the hyperplane that maximizes the gap between the two
classes. The points that are closest to the gap determine
(support) the hyperplane and are called support vectors.
Each side of the hyperplane consists of only points from
one class. The SVM would then classify each testing in-
stance based on the side of the hyperplane on which it
is located. If the training points cannot be separated by
a hyperplane, we can use a cost parameter c to penalize
training points that are on the wrong side of the hyper-
plane. The higher the value of c, the more importance
the machine would place on avoiding wrongly classified
points (relative to maximizing the gap between different
classes). To avoid overfitting to the cost parameter c, we
choose it exponentially. The machine can also assign a
hyperplane in a higher dimension than F by extending
all points to a higher dimension where a more complex
hyperplane can be found.

As SVMs are based on finding a maximum gap be-
tween different classes, distance is central to the SVM.
Given two instances s1 and s2 with feature vectors ~fs1
and ~fs2 , where each feature is an F -dimensional vector
in real space, a possible way to compute the distance be-
tween s1 and s2 is:

e−γ||
~fs1− ~fs2 ||

2

This is the radial basis function, with parameter γ. A
square kernel matrix of size K × K is built for the K
training instances this way, where the element in row
i, column j is computed as above for instances si and
sj . A value of 1 indicates perfect similarity, whereas
a value approaching 0 indicates strong dissimilarity. In
this work, we do not use the radial basis function; we use
distance-based metrics to compute the square kernel ma-
trix without using features, as described in Section 5.2.

We use the SVM provided by LIBSVM version 3.14,
which deals with multiple classes using a technique
known as “One-to-One” classification. Suppose the set
of classes is C, which is a list of integers. A differ-
ent SVM is trained for each pair of classes, resulting in
|C|(|C| − 1)/2 SVMs, as above; let the SVM responsi-
ble for distinguishing between classes i, j ∈ C, be de-

noted as SVMi,j . The classifier SVMi,j is responsi-
ble for deciding if each testing instance s is more likely
to belong in class i or class j; this output is denoted as
SVMi,j(s) ∈ {i, j}. Then we find the class a ∈ C which
maximizes |{j ∈ C|SVMa,j(s) = a}|. This technique
resembles a tournament in which all players (classes)
play against each other, and the player with the great-
est number of wins is declared the victor. There are other
ways to handle multiple classes in SVMs—for instance,
we can train binary classifiers to pit each class against
all other classes simultaneously in a “One-against-All”
classification. Each SVMi,j can also output a “degree
of certainty” in their decision. Other researchers have in-
vestigated more sophisticated techniques for multi-class
classification [17]. We use the approach provided by
LIBSVM in this paper.

5.2 Distance-based Metrics
A traffic instance is represented as a sequence of positive
(outgoing) and negative (incoming) integers indicating
the size of TCP packets or Tor cells. We train an SVM
by directly computing the kernel matrix from these se-
quences using distance-based metrics. In this paper, we
propose a number of new distance-based metrics. These
metrics are designed to allow greater success in website
fingerprinting by taking certain realistic observations in
mind. These observations are described in detail in each
corresponding section.

5.2.1 Optimal String Alignment Distance

Cai et al. use the optimal string alignment distance
(OSAD)4 to measure the distance between two traffic in-
stances. OSAD is used in word matching; it describes the
number of insertions, deletions, substitutions and trans-
positions required to transform a sequence of characters
to another, with the specific requirement that transposi-
tions can only affect elements that are adjacent in each
string. This means that the distance between xAy and
yx will be 3 operations (delete A, delete y, insert y be-
fore x) instead of 2 operations (delete A, transpose y and
x). The latter operation is not allowed as x and y are not
adjacent in the first string.

These operations can be assigned different costs with-
out affecting the above algorithm’s validity; the costs of
insertions and deletions must be the same, however, in
order to preserve distance symmetry. Cai et al. assign
a lower cost to transpositions than insertions and dele-
tions. The details of the OSAD algorithm can be found
in Appendix A.

4Cai et al. called the metric they used the Damerau-Levenshtein
distance, but a review of their code and their results showed that it is
the OSAD, which is a restricted version of the DLD.
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5.2.2 Damerau-Levenshtein Distance

The Damerau-Levenshtein distance (DLD) is closely re-
lated to the OSAD, with the chief difference being the re-
moval of the restriction on transpositions. The Damerau-
Levenshtein distance between two strings is therefore al-
ways less than or equal to the optimal string alignment
distance when the operation costs are the same.

We can use Algorithm 2 in Appendix A for the
Damerau-Levenshtein distance by making one additional
change [16]. When computing the value of Mtranspose

for the element at (i, j), instead of comparing with the
element at (i − 2, j − 2), we compare instead with the
element at (i1, j1), where i1 is the last occurrence in the
first string of the jth element of the second string, and
j1 is the last occurrence in the second string of the ith
element of the first string. The cost is then the cost of
the number of deletions necessary to make those two el-
ements adjacent, plus the cost of a transposition, plus the
cost of re-inserting the required elements. This allows us
to transpose elements that are not adjacent to each other
in the original strings.

5.2.3 Removing Substitutions

The permissible operations on one traffic instance to
transform it into another roughly correspond to possible
events when accessing the same site several times. Inser-
tions and deletions would be necessary if, for instance,
a site loaded a different advertisement (which may be
slightly larger or smaller), or if the text changed. Too
many connections may be opened and some connections
may be rejected, which would cause additional packets
to be sent in a particular traffic instance. Transpositions
are allowed at a lower cost because there is almost al-
ways some degree of reordering between two accesses
of the same site. The timing of requests is highly depen-
dent on how quickly data is received. As Tor relays are
frequently congested [1], packet timings of the same site
even across the same circuit will not be consistent (much
less across different circuits).

Substitutions, however, do not seem to correspond to
any realistic scenario. Accesses of the same site would
not change the packet sequence in a way that can be rep-
resented by substitutions, unlike insertions, deletions or
transpositions. We want to limit our permissible opera-
tions to those corresponding to possible situations that
could cause two instances of the same site to be dif-
ferent. This is because the cost between two traffic in-
stances should be low only if they correspond to the same
site. We therefore experiment with removing substitu-
tions from the list of possible operations. This can be
done by removing the Msub term when computing the
minimum of different operation costs at Mi,j .

5.2.4 Different costs for Incoming/Outgoing Packets

The number of incoming packets depends on the size of
web objects, which may change unpredictably for the
same site for various reasons described above. In con-
trast, the number of outgoing packets depends on the
number of resources (GET requests), the number of con-
nections Firefox would open to download these resources
(stream open requests), and the number of SENDMEs.
The number of SENDMEs can vary based on the num-
ber of incoming packets, but the rest do not change eas-
ily. Since the number of outgoing packets is less likely to
change when accessing the same site several times, out-
going packets should be more costly to insert or delete.
On average, around one out of nine Tor cells when ac-
cessing a site are outgoing. We experiment with chang-
ing the cost of operations such that inserting and delet-
ing outgoing packets are more costly than inserting and
deleting incoming packets.

5.2.5 Varying transposition cost

Accesses to the same site can result in different packet
sequences because of timing. Two resources that were
downloaded simultaneously in one access may be down-
loaded sequentially in another, as time delays may cause
the second to be requested late. Such delays, however,
are less likely to affect the initial packets. This is because
the order is more important initially: we must first con-
nect to the site, request the main page, get the main page,
and read the reference to resource locations before we
can begin downloading other resources. We experiment
with varying the cost of transpositions depending on the
position of the element, with the cost being higher at first
and lower down the line. For the element at (i, j), we
define P = min( im ,

j
n ). Then the transposition cost is

costtrans = (1− 0.9P )2. While other choices are possi-
ble, this satisfies our criteria and we will experiment with
it.

5.2.6 Fast Levenshtein-like distance

The amount of time taken to compute OSAD and DLD is
significant. We propose a new Levenshtein-like distance
algorithm that reduces the algorithm time from O(mn)
to O(m+ n) on two strings of size m and n; it is around
2,000 to 3,000 times faster in our experiments. The algo-
rithm is presented in Algorithm 3 in Appendix B.

5.3 Post-processing
The above metrics produce distances that are of the or-
der of magnitude of the number of packets in each string,
with smaller values indicating greater similarity. As dis-
cussed in Section 5.1, the elements of the kernel ma-
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trix should have values between 0 and 1, with 1 indi-
cating perfect similarity. We use the strategy described
by Cai et al. to transform these distances into values suit-
able for the kernel matrix. For a distance D(s1, s2) be-
tween two strings (traffic instances) s1 and s2, we first

compute D′(s1, s2) =
D(s1, s2)

min(|s1|, |s2|)
and then we take

K(s1, s2) = e−D
′(s1,s2)

2

. This gives us a value suitable
for the kernel matrix. Cai et al. showed that this method
was effective.

6 Experimental Results

6.1 Setting
Due to high computation costs, we used a parallel com-
puting cluster to perform our experiments. As each entry
of the SVM kernel is independent of the others, our prob-
lem is embarrassingly parallel. We used up to 200 cores
to compute the SVM kernel matrix simultaneously.

We performed our experiments on the Tor Browser
Bundle version 2.4.7-alpha-1. This bundle includes Tor
Firefox version 10.0.12esr and Tor version 0.2.4.7-alpha.
Tor Firefox includes HTTPS Everywhere and Noscript,
as well as a number of patches, including one that en-
ables pipelining and order randomization. We made one
change to Firefox: we disabled caching by setting the
value of network.http.use-cache to False in about:config.

We edited torrc, the configuration file for Tor, to
change two options. We set MaxCircuitDirtiness
to 600000 (seconds) so that our circuits would not
be automatically closed after 10 minutes. We closed
our circuits manually after each batch was completed
(i.e. after each site was loaded 4 times). We set
UseEntryGuards to 0 to disable the set of limited en-
try guards. Otherwise, we would have used only three
entry guards for our site accesses, which limits the valid-
ity of our results across Tor. The client is not expected to
make these changes; they are made for our experiments
to gather realistic data, as described in Section 4.1.4.

We installed iMacros 7.6 on Firefox. We wrote
iMacros code which loaded each site successively, and
programmed iMacros to close the tab five seconds after
each site finished loading. This ensures that no future
streams will be opened for that site, and it roughly corre-
sponds to a client who spends a small amount of time on
each site after it loads. The iMacros code worked with
our Tor Controller code in the experiment; the code is
given in Algorithm 1, with the iMacros code in bold.

We used a Tor Controller [9] to control Tor’s behaviour
during the experiments. After each site access, we closed
all open Tor streams and then reported the time. (We
closed the open streams so that they would not affect the
next traffic instance; a more natural option was to wait for

Algorithm 1 iMacros and Tor Controller code
for 0 ≤ batchcounter < 10 do

for 0 ≤ i < 100 do
for 0 ≤ counter < 4 do

Mark the start time
Load site i
PAUSE 5 seconds
Mark the end time
Close the tab and start a new tab
Close all streams
PAUSE 4 seconds

end for
end for
Close all active circuits

end for

them to close, but this significantly increased data collec-
tion time and did not affect the order of packets.) Next,
after each site is visited 4 times in a batch, we closed all
open circuits. This ensured that each circuit could not be
used for more than 4 accesses of the same site. Only the
packets captured between the marked start time and end
time of each site were included in the traffic instance.

6.2 Closed-World Results

We tested the various metrics described in Table 1 (used
to create the SVM kernel matrix, as described in Sec-
tion 5.3) against the data sets described in Table 2. Our
metrics specified the cost of different operations. To pre-
vent overfitting, we chose the operation costs once and
did not attempt to vary the cost in order to find the one
that returned the best results; it is possible that other op-
eration costs may produce better results. We varied the
cost parameter c of the SVM exponentially from 40 to
410, and chose the best result, which was different for
each metric. We collected traffic instances using the
methodology described in Section 4.1.4.

We experimented on 100 sites with 40 instances each,
and performed 10-fold cross validation, so that there
were 36 training cases and 4 testing cases for each site
(400 tests for each fold). We computed the kernel matrix
once and used different parts of the matrix to train and
test for each fold. Our results are shown in Table 7 in
Appendix C, and some interesting excerpts are shown in
Table 3. We acquire one accuracy value for each of the
folds, and we show the mean and standard deviation of
these 10 accuracy values for each metric and data set.

The highest accuracy achieved was 90%, using set
4 (Tor cells with SENDMEs removed) and metric 5
(OSAD metric with a combination of strategies; here-
after referred to as the combined OSAD). This can be
compared to 87% using set 2 and metric 1 (the data pro-
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1 OSAD, with costid = costsub = 2,
costtrans = 0.1

2 OSAD, disabling substitutions
3 OSAD, with costid = 6 if the element is

positive (outgoing)
4 OSAD, with varying transposition cost squared to

its position in the sequence
5 OSAD, with all changes in metrics 2, 3 and 4
6 Damerau-Levenshtein Distance, with all costs = 2
7 Fast Levenshtein-like distance

Table 1: Distance metrics used to create the SVM kernel
matrix, as described in Section 5.3. Metric 1 is that used
by Cai et al. [2]; metric 5 is our combined OSAD metric.

1 TCP/IP packet sequence
2 TCP/IP packet sequence, rounded up to 600
3 Tor cell sequence
4 Tor cell sequence, without SENDMEs

Table 2: Data sets used as inputs to the SVM. Set 2
(Section 4.2.1) is that used by Cai et al. [2]; set 4 (Sec-
tion 4.2.3) is our proposal.

cessing and metric used by Cai et al.; hereafter referred
to as old OSAD). This is an over 20% decrease in the
mean error rate. Our fast Levenshtein-like algorithm
achieved a somewhat lower accuracy of 70% on set 4,
but with a substantially reduced computation cost: on
the same cluster of cores, using the fast algorithm on set
4 (Tor cells with SENDMEs removed) in our data, kernel
matrix computation took 283 CPU seconds, compared
to 608,000 CPU seconds for combined OSAD. For each
fold, training the SVM took around 6 CPU seconds for
both metrics and testing was done in 0.7 CPU seconds.

6.2.1 Cai’s Data

Cai et al. graciously shared with us the data they col-
lected for their paper [2]. We performed the same anal-
ysis as above on their data. We show the results on Cai
et al.’s data in Table 8 in Appendix C, and some excerpts
are shown in Table 3. Although these sets were indepen-
dently collected with different methodologies and selec-
tion of sites, the accuracy rates were largely comparable,
suggesting that our analysis is robust. We note that with
this data, the decrease in the mean error rate from the old
OSAD metric of 1− 0.86 = 0.14 to our combined OSAD
metric of 1− 0.91 = 0.09 is over 35%.

6.3 Open-World Results

We conduct an open-world experiment to evaluate the
potential of censorship on Tor. A censor may choose

Set Metric Accuracy Accuracy
(our data) (Cai’s data)

1 1 0.74 (± 0.10) 0.82 (± 0.02)
2 1 0.87 (± 0.03) 0.86 (± 0.02)
2 5 0.65 (± 0.09) 0.76 (± 0.04)
3 4 0.86 (± 0.06) 0.84 (± 0.02)
4 2 0.87 (± 0.06) 0.89 (± 0.02)
4 5 0.90 (± 0.06) 0.91 (± 0.02)
4 7 0.70 (± 0.07) 0.71 (± 0.02)

Table 3: Closed-world results

Set Metric Site TP FP

2 1

google.de 29/40 1/860
facebook.com 34/40 0/860
wikipedia.org 39/40 2/860

twitter.com 37/40 0/860

4 5

google.de 38/40 0/860
facebook.com 39/40 2/860
wikipedia.org 39/40 0/860

twitter.com 39/40 0/860

Table 4: Open-world results

to allow Tor, but monitor or block specific sites. Our
own data set is used for these experiments. To emu-
late censorship, we choose four sites that have a history
of being censored: google.de, facebook.com,
wikipedia.org and twitter.com (hereafter re-
ferred to as the “censored sites” in this section).

We used Alexa’s top 1,000 sites for this experiment.
Sites ranked 101 to 1,000 were chosen as non-censored
sites and one traffic instance from each site was loaded,
out of which 860 were successfully loaded and used. For
each of the censored sites, we trained an SVM on 40 cen-
sored instances and 860 non-censored instances for 10-
fold testing. On the same fold, the attacker did not train
on the same non-censored sites that the client visits. True
Positives (TP) is the number of censored traffic instances
that were classified as censored (population of 40); False
Positives (FP) is the number of non-censored traffic in-
stances that were classified as censored (population of
860). Alexa’s top 1,000 sites were not manually pro-
cessed in order to fix localization. The results are shown
in Table 4. We see that most sites were correctly iden-
tified with over 90% success rate. With the combined
OSAD (set 4, metric 5), in particular, we see that these
particular sites reach a mean of 96.9% recall, compared
to 86.9% on the old OSAD (set 2, metric 1). There are
very few false positives in all cases. The cost c of the
SVM was lowered to 0.25 to improve accuracy.
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Set Metric With Def. Without Def.

2 1 0.87 (± 0.05) 0.82 (± 0.03)
5 0.80 (± 0.09) 0.79 (± 0.04)

4 1 0.79 (± 0.06) 0.77 (± 0.07)
5 0.90 (± 0.03) 0.88 (± 0.06)

Table 5: Comparison of accuracy with and without Tor’s
Pipelining and Order Randomization Defense

6.4 Evaluation of Tor’s Pipelining and Or-
der Randomization Defense

The above experiments were conducted with Tor’s
pipelining and order randomization defense [12] en-
abled. Cai et al. demonstrated that this defense was inef-
fective against their technique [2]. We repeat this exper-
iment on our metrics as well. We collected 10 instances
each of 100 sites with pipelining and order randomiza-
tion disabled, and trained the SVM using the same pa-
rameters on several set-metric combinations. Each cir-
cuit was closed after 1 access to each site, thus ensur-
ing that the attacker does not train on the circuits that
the client uses. We compare these results to those with
pipelining and order randomization (our main data set),
also on 10 instances each.

Our results are presented in Table 5; results collected
in the data set with this defense enabled are listed in the
column “With Def.”; those with this defense disabled are
listed in the column “Without Def.” The results demon-
strate no significant disparity with or without the defense;
in fact, as Cai et al. observed, the metrics seemed to be
marginally more accurate with the defense enabled.

7 Discussion

7.1 Damerau-Levenshtein Distance
The Damerau-Levenshtein Distance (metric 6) has a
much lower success rate than other metrics, even though
it allows unrestricted transpositions. We seek to investi-
gate why its success rate was so low.

The combined OSAD (metric 5) is much more suc-
cessful than DLD (metric 6). We compare the D′ value
(normalized distance) of those two metrics. We looked
at the list of all pairs of traffic instances belonging to
the same site, and took their D′ value. For the com-
bined OSAD, the median D′ value was 0.972. For each
site, we also looked for another site which had the min-
imum mean D′ value to this site (the most similar site);
the lower this value is, the more likely those two sites
would be confused. The median D′ value to the most
similar site was 1.06 across 100 sites. We repeated these
for DLD, and the values were 0.386 and 0.265 respec-
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Figure 2: Number of sites within some distance of site 1
on set 4 for combined OSAD (metric 5) and DLD (metric
6)

tively. For combined OSAD, a site was persistently most
similar only to itself, whereas for DLD, a site was often
more similar to some other site than itself. This indi-
cates that DLD is not successful in distinguishing differ-
ent sites because it is too lenient. We showcase a com-
parison between the two metrics in Figure 2 on set 4,
site 1 (google.de). The graph shows the number of
sites within some distance of site 1, taking the mean dis-
tance over all pairs of instances belonging to the com-
pared sites. We can see that the line for DLD (metric
6) is higher, which indicates that more sites are possible
contenders for classification (thus resulting in misclassi-
fication more often). This is likely due to the fact that the
effect of DLD’s unrestricted transpositions is to make it
much easier to transform any string into any other string.
This increases the number of sites that are likely to be
confused with a given site.

7.2 Training set selection and parameters
in SVM

We specified that our batches of 4 instances of each of
100 sites should use different circuits, and the batches
should not be collected right after each other. We demon-
strate the importance of our methodology with a small
experiment. On 100 sites in the closed-world scenario,
we take the first batch (4 sites), and we train our SVM
on it using combined OSAD and 4-fold testing. This re-
turned an accuracy value of 86%. We then trained on
trials 1, 11, 21, and 31, which were from 4 different
batches. The training size was therefore the same. This
returned an accuracy of 74%. We therefore emphasize
that the collection methodology cannot be taken lightly;
different results must be compared on the same data set.

The size of the training set has a significant impact on
training accuracy. We compare several metrics and how
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the size of the training set affects their accuracy. The
results are presented in Figure 3. To gather more data
points, for this particular section, we used 3-fold cross-
validation rather than 10-fold cross validation. The max-
imum training size on our data set is 26. An increased
training size generally improved the accuracy. We re-
call that the data was collected in batches of 4 immedi-
ately after one another using the same circuit for each
batch, so that trial numbers 1 to 4 are similar to each
other; 5 to 8 are similar to each other; and so on. To en-
sure that our training and testing data are from separate
batches, we do the following. Suppose the size of the
training plus testing sets is K+L, we computed the sep-
aration s = b40/(K +L)c, and only the trials numbered
1, 1+ s, 1+ 2s, . . . , 1+ (K +L− 1)s are used for each
site. We observe that combined OSAD consistently out-
performs other metrics when we vary the training size.
It should be noted that the results presented in this sec-
tion were different from those presented in Section 6.4
because the trials were chosen differently.

We used Alexa’s top 100 sites for our closed-world
experiments. We chose this number to ensure compara-
bility with previous results such as those by Panchenko et
al. and Cai et al. [2,11] We seek to understand if attempt-
ing to train on a greater number of sites would cause a
significant change in accuracy. To do so, we varied the
number of sites and observed the effects on our best met-
ric, the combined OSAD (metric 5, set 4). We chose the
first 10 sites, the first 20 sites, and so on. We performed
10-fold cross-validation on 40 trials for each site. The
effect of varying our total number of sites on the accu-
racy is shown in Figure 4. We see that the accuracy for
10 sites was much higher; this may be because the top 10
sites are distinct from each other, reliable, and contain
little dynamic content in their home pages. There is no
noticeable difference in accuracy with more than 40 sites
for training. This suggests to us that a more ambitious
attacker seeking to identify a greater number of sites can
use our techniques with no significant penalty.

For our experiments, we varied the cost parameter of
the SVM, c, over a range of values to determine the best
cost for the metric. In most cases this did not produce
any significant change in the accuracy. However, vary-
ing the cost parameter was important for us to achieve
our best results in the open-world model. We present the
number of False Negatives (out of 40 actual positives)
and False Positives (out of 860 actual negatives) for com-
bined OSAD (metric 5, set 4) on twitter.com in Fig-
ure 5. We see that a high cost parameter leads to more
false positives (uncensored sites that were classified as
censored) and false negatives (censored sites that were
classified as uncensored), which can be avoided with a
lower cost parameter such as 0.25.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20  25  30

A
cc

ur
ac

y

Number of trials trained per website

Metric 5, Set 4
Metric 1, Set 2
Metric 4, Set 3
Metric 2, Set 1

Figure 3: Effect of varying number of training trials on
accuracy in closed-world results

 0.8

 0.85

 0.9

 0.95

 1

 0  20  40  60  80  100

A
cc

ur
ac

y

Number of websites trained

Metric 5, Set 4

Figure 4: Effect of varying number of training sites on
accuracy in closed-world results. Note that the y-axis is
not 0-based.

 0

 2

 4

 6

 8

 10

 12

4-2 40 42 44 46 48 410

T
ot

al
 n

um
be

r

SVM cost parameter (c)

False Positives
False Negatives

Figure 5: Effect of varying SVM cost on false negatives
and false positives in open-world results

12



# Site Acc. Mistaken as
1 blogspot.com 0.484 blogger.com (81%)
2 blogger.com 0.547 blogspot.com (87%)
3 msn.com 0.564 yahoo.de (11%)
4 tudou.com 0.584 mediafire.com (12%)
5 bbc.co.uk 0.603 godaddy.com (13%)

Table 6: The most difficult sites to classify with corre-
sponding Accuracy (Acc.). The last column is the site
which the incorrectly classified site was most often con-
fused as, with the corresponding percentage (out of mis-
classified instances).

7.3 Difficult sites and Defenses
To understand how a site may defend itself against web-
site fingerprinting, we looked at the most difficult sites to
classify. The five most difficult sites to classify, with their
corresponding classification rates, are shown in Table 6.
The classification rate is a mean over all set-metric com-
binations that yielded an accuracy of 0.7 or above. We
see that blogspot.com and blogger.com are ex-
tremely commonly mistaken for each other. It turns out
the reason for this is simply that these are the same site,
with two different names, so these “misses” were actu-
ally correct classifications. Apart from those, we seek to
understand why the remaining commonly mistaken sites
were significantly more difficult to classify. After some
analysis, we observed a number of contributing factors,
as follows:

Localization. We loaded msn.com without local-
ization specification, and so it often redirected
clients to completely different pages with differ-
ent layouts. For instance, ca.msn.com and
plasa.msn.com would always load different
data. In the case of bbc.co.uk, specifying the
localization of the site we wished to access did not
stop the site from loading localized data. This par-
ticular site shows different news stories to UK resi-
dents than to international clients.

Updating content. Sites 3 and 5 were both active news
sites that changed their content more than daily.
Site 4 was a video site that constantly updated it-
self based on the latest popular videos, which are
recommended to clients on the front page. Our data
collection process could not keep up with their con-
tent updates.

Gradual content. Sites 3 to 5 all involved automatic
slide shows. The images in these slide shows are not
always loaded before the page is considered com-
pletely loaded. Rather, they are loaded when the

slide itself is loaded. Therefore, the number of slide
images that are loaded depended on the total load
time, which varies across different circuits in Tor.

Randomized content. Site 4 involved randomized rec-
ommendations based on client preferences. As
these recommendations would change across differ-
ent accesses to the site, they are random to the Tor
client.

The above strongly suggests that sites are harder to
identify if they involve significant amounts of dynamic
content, especially if such dynamic content affected the
page size. Web designers themselves may help to protect
the client’s privacy this way. In addition, Tor may be
configured to load random localizations of popular sites
as a defense mechanism.

8 Conclusion

In this paper, we demonstrated improved website finger-
printing techniques on Tor. These attacks can be per-
formed by a single observer, who may be any one of the
hundreds of volunteer entry guard relays in the Tor net-
work, or an attacker tapping the link between a client and
her entry guard. We observed that measuring Tor cells,
rather than TCP/IP packet sizes, yields more accurate in-
formation, and removing the Tor SENDME cells reduces
the noise further. We described a new distance-based
metric (combined OSAD) for comparing packet traces,
and also showed a much faster (albeit less accurate) met-
ric that an attacker with limited computation resources
can easily perform.

Using our improved techniques, we demonstrated a
marked improvement in accuracy with open-world ex-
periments on Alexa’s top 1000 sites to emulate a poten-
tial censor. With our techniques, the recall was above
95% on four commonly blocked sites and the false posi-
tive rate was less than 0.06% for those sites. It is possible
that these results can be improved further with more so-
phisticated multi-class training approaches or some fine-
tuning to the parameters used in the experiments. To
compare our results with those of previous authors, we
also performed closed-world experiments on Alexa’s top
100 sites with 40 instances each, and we showed that our
new metrics and data processing techniques yielded up
to 35% fewer mistakes than previous work. Our results
serve to warn us that even with TLS encryption, padding,
and packet relaying, Tor may not be able to protect web-
browsing clients from deanonymization by a passive ob-
server with limited resources.
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A Details of the Optimal String Alignment
Distance

The optimal string alignment distance can be calculated
with the dynamic programming algorithm roughly de-
scribed as follows. Given two strings s1 and s2 with m
and n characters respectively, we construct a matrix M
of size m by n. The element of matrix M at row i and
column j is the distance between s1 up to element i and
s2 up to element j. Elements are calculated one by one
starting from i = 1 and j = 1, where each element is
calculated based on the previously-calculated elements
at positions (i − 1, j) (insertion), (i, j − 1) (deletion),
(i−1, j−1) (substitution), and (i−2, j−2) (transposi-
tion) to minimize cost. Transpositions are only allowed
when the last two elements of the two strings at i and j
are indeed a transposition of each other. The algorithm
is given in Algorithm 2. [10]

Algorithm 2 Optimal string alignment distance
Input: Strings s1, s2 with |s1| = m and |s2| = n; inser-

tion/deletion cost costid, substitution cost costsub,
transposition cost costtrans

Output: OSAD of s1 and s2

1: Initialize matrix M of dimensions m by n, with:
2: M(i, 0) = i · costid ∀ 0 ≤ i ≤ m
3: M(0, j) = j · costid ∀ 0 < j ≤ n
4: for 0 < i ≤ m, 0 < j ≤ n do
5: if s1(i) = s2(j) then costidt = 0
6: else costidt = costid
7: end if
8: Mins =M(i− 1, j) + costidt
9: Mdel =M(i, j − 1) + costidt

10: Msub =M(i− 1, j − 1) + costsub
11: if s1(i) = s2(j − 1) & s1(i− 1) = s2(j) then
12: Mtranspose =M(i− 2, j − 2) + costtrans
13: else
14: Mtranspose = +∞
15: end if
16: M(i, j) = min{Mins,Mdel,Msub,Mtranspose}
17: end for
18: Return M(m,n)

B Details of the Fast Levenshtein-like Dis-
tance

In this algorithm, the transposition and deletion costs are
input as parameters. All elements in each string are ini-
tially marked as unused. We proceed as follows for each
element k in s1. We find the first identical element, k,
in s2 that is unused. The difference in position between
these elements is multiplied by the transposition cost and
then added to the total transposition distance. Then, we
mark that element in s2 as used. If for some element
in s1 we cannot find any identical element in s2 that is
unused, the deletion distance is incremented by the dele-
tion cost. After all elements in s1 have been processed,
the deletion distance is further increased by the number
of elements in s2 that remain unused, multiplied with the
deletion cost. The total distance is the sum of the trans-
position distance and the deletion distance.

The above algorithm can be efficiently implemented
by first building a dictionary D of all elements
in s1, such that for each element k, D(n) =
{D1(k), D2(k), . . . , Dj(k)} is a list of all positive in-
tegers such that the element in s1 at the position Di(k)
for 1 ≤ i ≤ j is k. The dictionary is computed in linear
time and is used in the algorithm. The algorithm using
the dictionary is given in Algorithm 3; it is equivalent to
the above description. In our experiments, we take the
transposition cost to be 0.01, the outgoing packet dele-
tion cost to be 4, and the incoming packet deletion cost
to be 1.

Algorithm 3 Fast Levenshtein-like distance
Input: Strings s1, s2 with |s1| = m and |s2| =

n, dictionary D for element positions in s1;
insertion/deletion cost costid, transposition cost
costtrans

Output: Levenshtein-like Distance of s1 and s2

1: Initialize cost = 0
2: for 0 < i ≤ n do
3: if D(s2(i)) 6= ∅ then
4: cost = cost+ |D1(s2(i))− i| · costtrans
5: D(s2(i)) = D(s2(i))\{D1(s2(i))}
6: else
7: cost = cost+ costid
8: end if
9: end for

10: cost = cost+ |D| ∗ costid
11: Return cost
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C Full results for all metrics and data sets

Here we show the mean and standard deviations of 10
accuracy measurements for each combination of metric
(from Table 1) and data set (from Table 2).

Table 7 shows the results for the data we collected, and
Table 8 shows the results for the data collected by Cai et
al. [2]

Table 7: Results on traffic traces we collected for each
metric (M.) and set (S.)

S.1 S.2 S.3 S.4
M.1 .74 ± .10 .87 ± .03 .86 ± .06 .83 ± .06
M.2 .65 ± .11 .82 ± .05 .88 ± .06 .87 ± .06
M.3 .55 ± .13 .72 ± .08 .89 ± .06 .90 ± .06
M.4 .74 ± .10 .87 ± .03 .86 ± .06 .83 ± .07
M.5 .46 ± .13 .65 ± .09 .89 ± .06 .90 ± .06
M.6 .20 ± .04 .23 ± .06 .21 ± .05 .22 ± .05
M.7 .46 ± .11 .53 ± .08 .69 ± .06 .70 ± .07

Table 8: Results on traffic traces collected by Cai et al.
for each metric (M.) and set (S.)

S.1 S.2 S.3 S.4
M.1 .82 ± .02 .86 ± .02 .84 ± .02 .87 ± .02
M.2 .71 ± .04 .84 ± .02 .88 ± .02 .89 ± .02
M.3 .65 ± .07 .79 ± .04 .90 ± .02 .87 ± .02
M.4 .82 ± .02 .86 ± .02 .84 ± .02 .87 ± .02
M.5 .59 ± .06 .76 ± .04 .91 ± .02 .91 ± .04
M.6 .12 ± .03 .14 ± .06 .09 ± .04 .10 ± .04
M.7 .54 ± .03 .52 ± .03 .70 ± .02 .71 ± .02
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