
On Realistically Attacking Tor with Website Fingerprinting

Tao Wang
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

t55wang@cs.uwaterloo.ca

Ian Goldberg
Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

iang@cs.uwaterloo.ca

ABSTRACT
Website fingerprinting allows a local, passive observer monitoring
a web-browsing client’s encrypted channel to determine her web
activity. Previous attacks have shown that website fingerprinting
could be a threat to anonymity networks such as Tor under labora-
tory conditions. However, there are significant differences between
laboratory conditions and realistic conditions. First, the training
data set is very similar to the testing data set under laboratory con-
ditions, but the attacker may not be able to guarantee similarity
realistically. Second, laboratory packet sequences correspond to a
single page each, but for realistic packet sequences the split be-
tween pages is not obvious. Third, packet sequences may include
noise, which may adversely affect website fingerprinting, but this
effect has not been studied.

In this paper, we tackle these three problems to bridge the gap
between laboratory and realistic conditions for website fingerprint-
ing. We show that we can maintain a fresh training set with min-
imal resources. We demonstrate several classification-based tech-
niques that allow us to split full packet sequences effectively into
sequences corresponding to a single page each. Although we were
not able to remove noise effectively, we will show that it is difficult
for users to generate sufficient background noise to disrupt website
fingerprinting on Tor. With our techniques, we are able to build
the first website fingerprinting system that can operate on packet
sequences collected in the wild.

1. INTRODUCTION
In 2009, Panchenko et al. [18] introduced a website fingerprint-

ing (WF) attack that successfully achieved accurate web page clas-
sification on Tor. WF threatens clients seeking to hide their on-
line behaviour from local adversaries—ones able to monitor the
network close to the client, such as ISPs, wiretappers, and packet
sniffers. Since then, researchers have published more accurate at-
tacks, improving the true positive rate (TPR) [3, 23] and cutting
down the false positive rate (FPR) [22] to practical levels (far be-
low 1%). They have shown that these attacks are computationally
cheap and effective in the open-world setting [22]. However, some
researchers remain unconvinced that these attacks are effective in
the wild [13, 19].

Indeed, the attacks have not been demonstrated to be effective
in the wild on Tor; they were proven only under laboratory condi-
tions. Recently, Juarez et al. [13] identified significant differences
between attacks in the wild and attacks proven under laboratory
conditions. They noted that previous works on WF attacks made
six limiting assumptions:

1. Template websites: Websites can be modeled as templates.

2. Closed-world: Under the closed-world model, the WF attack
is never tested with web pages outside a fixed set of moni-
tored pages. A WF attack that operates under the open-world
model must be able to determine whether or not a web page
is in the set of monitored pages.

3. Replicability: The attacker’s classification training set is col-
lected under the same conditions as the client. Specifically, a
stale training set can cause WF accuracy to deteriorate.

4. Browsing behaviour: Users browse the web sequentially, one
page after the other.

5. Page load parsing: The adversary knows when pages start
and end. For example (related to the above), most users may
have significant time gaps between page loads.

6. No background traffic: The adversary can filter out all back-
ground traffic.

Amongst those, assumption 1 is only made in one specific work
by Cai et al. [3] 1 Assumption 2 has been dealt with by previ-
ous work [18, 22, 23]. For example, the kNN attacker by Wang
et al. [22] can achieve a true positive rate of 85% and a false pos-
itive rate of 0.6% in the open-world model, with no limit on the
number of web pages. In this work, we tackle assumptions 3 to 6,
as follows:

Freshness (assumption 3). We determine empirically that the at-
tacker needs only a small amount of data to perform WF ef-
fectively, and therefore it is easy to keep it fresh. Replicabil-
ity is indeed possible. Nevertheless, we propose and test a
scheme that updates the training set more efficiently by scor-
ing each element based on consistency and relevance.

Splitting (assumptions 4 and 5). We show that it is indeed possi-
ble for adversaries to know when pages start and end from
full realistic packet sequences, even if the user is visiting
multiple pages at once. We turn realistic packet sequences
into laboratory packet sequences by splitting: distinguishing
between different web pages which may occur sequentially
or even in parallel. We demonstrate the effectiveness of time-
based splitting and classification-based splitting.

Background noise (assumption 6). We show that noise removal
is a difficult problem and we cannot do so accurately, but

1We should note that assumption 1 is not actually an assumption
of the attacker’s capabilities; it is just a model used to improve
classification accuracy. Nevertheless Juarez et al. lists it under their
set of assumptions, so we include it for the sake of completeness.

we also show that it is very hard to generate sufficient back-
ground noise on Tor to disrupt WF due to the design of the
Tor Browser.

We emphasize that this work does not propose a new classifier
to improve the classification accuracy of known WF attacks un-
der laboratory conditions; rather, we augment any WF attack with
tools to operate under realistic conditions. Furthermore, we do
not know the final accuracy of website fingerprinting in the wild
(and thus whether or not this attack is truly practical), because this
depends significantly on user behaviour for which we have lim-
ited information. Nevertheless we will evaluate each component
of our system individually to show that we have made WF at-
tacks more realistic. The code and data for our system is available
for download at the CrySP site https://crysp.uwaterloo.
ca/software/webfingerprint/.

Our results are presented as follows. In Section 2 we describe the
related work that led to WF approaching practicality and thus moti-
vated this work. In Section 3 we give the background and terminol-
ogy of this paper. In Section 4 we demonstrate that an attacker can
practically maintain a fresh training set. In Section 5 we describe
how we solve the splitting problem, and present the results in Sec-
tion 6. We tackle noise removal in Section 7. Then in Section 8 we
discuss the reproducibility of our work, and conclude in Section 9.

2. RELATED WORK
In this section, we describe how WF progressed from a theoret-

ical attack under specific situations towards a practical threat for
anonymous communications in general. This section will focus
on the practicality of the schemes; we refer the reader to previous
work [1–3, 5, 9, 11, 12, 14, 16, 18, 20, 22, 23] for a more technical
description of the particular machine-learning classifiers they used.

A practical WF attacker uses the open-world model, where the
attacker chooses a set of monitored pages for the classifier. When
the client visits any of the monitored pages, the classifier attempts
to identify the page. All other web pages are non-monitored and
the classifier only needs to identify that non-monitored pages are
non-monitored. This type of WF could be used in a system like
XKEYSCORE [10], for example, where features of user traffic are
scored to decide which ones to flag for storage or further analysis.
The open-world model is in contrast to the closed-world model,
where the client is not allowed to visit non-monitored pages. As
there are almost a billion indexed web pages, the open-world model
is of practical interest. The oldest WF attacks [5, 12, 14, 20] per-
formed closed-world experiments on simple encrypted channels,
and the newest [18, 22] give open-world results on Tor.

2.1 Closed world on encrypted channels
Cheng et al. [5] (1998), Sun et al. [20] (2002), and Hintz [12]

(2003) published some of the earliest WF attacks on clients using
a simple encrypted channel. In their works, the attacker was able
to determine which TCP connection each packet came from, and
at the time (before persistent HTTP connections) each resource on
a web page was loaded on a different connection. Therefore, the
attacker was aware of the byte length of each resource on the page.
This is no longer a realistic assumption of the attacker, so further
works (including ours) have weaker assumptions of the attacker’s
capabilities.

Liberatore and Levine [14] (2006), Bissias et al. [1] (2006) and
Herrmann et al. [11] (2008) demonstrated successful WF attacks
for such a weaker adversary. For their attacks, the attacker only
needs to know the length of each packet. The attacker is not aware
of which connection each packet belongs to. This is especially rele-

vant to privacy technologies such as VPNs or TLS-enabled proxies.
These works showed that, in the closed-world scenario, an attacker
can distinguish among a few hundred web pages.

2.2 From encrypted channels to Tor
The above works showed that WF can succeed in the closed-

world setting on a simple encrypted channel, such as TLS to a
proxy, or a VPN. As suggested by Dyer et al. [9], such a channel
can also be defended by using dummy packets to flood a constant
stream of data in both directions (in an amount independent of the
actual traffic), which is provably secure [22] against WF. However,
both attacks and defenses suffer on low-latency, resource-limited
anonymity networks, such as Tor. Expensive defenses are impracti-
cal as Tor is bandwidth starved [21], and attacks are harder [11] due
to unpredictable network conditions and Tor’s own defenses [22].

Panchenko et al. [18] (2009) demonstrated the first effective WF
attack against Tor and other anonymity networks, using an SVM
with a list of website features. They also showed a 57% TPR and
0.2% FPR in the open-world setting if the attacker monitors five
pages. Dyer et al. [9] later showed that the variable n-gram clas-
sifier is also effective for WF with a similar set of features. Cai et
al. [3] improved the closed-world accuracy by using the Damerau-
Levenshtein distance. Their paper however did not perform open-
world experiments. Wang and Goldberg [23] modified this algo-
rithm and showed that the more accurate, modified version has an
open-world TPR of 97% and FPR of 0.2%, but only for a single
monitored page.

2.3 From closed world to open world
The number of monitored pages used in early works on open-

world WF [3, 18, 23] has been too small for implications on real-
world practicality. Wang et al. showed [22] that their earlier at-
tack [23] would have an open-world TPR of 83% and FPR of 6%
when the number of monitored pages increased from 1 to 100. Cai
et al. [2] showed a way to convert closed-world results to open-
world results, which would result in a FPR of around 15% for the
best attacks. Both of those are too high considering the low base
incidence rate of the WF scenario.

Wang et al. [22] (2014) showed a new attack using the k-Nearest
Neighbours (kNN) classifier and a new distance learning algorithm
that achieved a significantly lower open-world FPR than previous
work. For 100 pages, TPR was around 85% and FPR was around
0.6%. Furthermore, this attack is fast, as it takes only minutes to
train and test 4,000 instances compared to several hundred CPU
hours in some previous work [3, 23].

Previous work has therefore shown that WF is effective in the
open world under laboratory conditions; in this paper, we enhance
such works with tools to operate in realistic settings.

3. BACKGROUND

3.1 Tor and Tor Browser
Tor is a popular low-latency anonymity network supported by

volunteer nodes that relay traffic for Tor users. Tor users construct
a circuit of three nodes (the entry guard, the middle node, and the
exit node) and use multi-layered encryption; the exit node is able
to see the original TCP data sent by the client, and the entry node
knows the client’s identity. Without collusion between entry and
exit nodes of the same circuit, none of the relays (or observers on
those relays’ networks) should be able to link the client’s identity
with their packets.

Tor sends data in fixed-size (512-byte) cells. Each circuit carries
multiple streams corresponding to different TCP connections. For

flow control, Tor uses SENDME cells, which are sent once per 50
incoming cells for each stream and per 100 incoming cells for each
circuit.

Tor performs no mixing to keep latency minimal, which renders
it susceptible to timing attacks. While it is well known that Tor’s
anonymity guarantees can be broken using a timing attack by global
adversaries observing both ends of the user’s circuit, it is assumed
that such adversaries are rare due to Tor’s global nature [8]. How-
ever, the WF scenario assumes a much weaker adversary: a local,
passive adversary that only observes the user’s end of the connec-
tion, such as the user’s ISP, a packet sniffing eavesdropper, wire-
tapper, legally coercive forces, or any Tor entry node itself.

3.2 Website Fingerprinting
In website fingerprinting, a local, passive eavesdropper (such as

an ISP) observes packets to and from a web-browsing client, and
attempts to guess which pages the client has visited. For Tor, the
eavesdropper is limited to only the time and direction of each Tor
cell; as each Tor cell is encrypted and has a fixed size of 512 bytes,
the attacker gains no further information from each cell.

In the open-world setting, the attacker has a set of pages that he is
interested in (monitored pages), and he does not attempt to identify
any other web page (non-monitored pages). The classification is
positive when the attacker identifies any page as a monitored page
(and negative for non-monitored); it is true if the identification is
correct and false if not. Incorrectly classifying any monitored page
as a different monitored page counts as a false positive. The open-
world setting allows us to analyze a realistic attacker in a world
where there may be any number of possible web pages. As the
base incidence rate (the rate at which the client visits a page from
the set of monitored pages) is expected to be low, the false positive
rate must be low as well to avoid the base rate fallacy.

In this paper, we perform all experiments in the open world, and
we obtain our results using leave-one-out cross validation.

3.3 Experimental setup and evaluation
We used Tor Browser 3.6.4 with Tor 0.2.5.7 to collect the data

used in this paper. We used a custom Firefox profile to enable au-
tomatic page loading and data collection, as otherwise Tor Browser
launches its own instance of Tor and often interrupts page loading
with error messages.

We collected data between September and October 2014. As
several of our experiments required loading two pages at once in the
same browser session, tcpdump did not provide us with enough
information to distinguish between the two pages. We collected
direct cell logs by modifying Tor to record stream and circuit num-
bers, and we use the direct cell logs only to obtain the ground truth
for splitting experiments. Specifically, it should be noted that we
only use those cell logs to obtain ground truth; this does not change
the fact that any local passive attacker can perform splitting using
our methods.

We disabled long-term entry guards to obtain a more complete
view of the network. We used one client located at a fixed IP to
collect our data. We collected several new data sets:

1. Sensitive data set. Contains 40 instances of 120 sensitive
pages that are censored in individual ISPs of the United King-
dom, Saudi Arabia, or China. This data set was also used by
Wang et al. [22]; we updated the page list and re-collected the
data set because many of the pages are no longer accessible.

2. Open world data set. Contains one instance each of 5,000
pages from Alexa’s top 10,000 pages. These pages are used
as the non-monitored page set to test the false positive rate.

We also collected data sets where multiple pages were accessed
at once, and data sets with noise, using the same methodology.
These data sets will be described in the relevant sections below.

4. TRAINING SET MAINTENANCE
In this section we demonstrate that it is practically feasible for

a low-resource attacker to maintain an updated training set for WF
attacks on Tor. In fact, the attacker only needs to gather data con-
stantly on only a single desktop-class computer. We show the fol-
lowing:

1. Training set size: We empirically determine that a WF at-
tacker can perform WF with a small training set. An effective
training set is small enough that it can be kept fresh simply by
updating all data points in a cycle on a single desktop-class
computer.

2. Training set update: We propose an algorithm to detect and
drop bad data points from a training set to keep it fresh.
A trivial algorithm would be to drop the oldest data points.
We propose using two other metrics for determining which
points to drop: consistency and relevance. We show that
these methods can be used to update the training set as ef-
fectively as simply updating all data points in a cycle.

4.1 Training set size
The number of packet traces the attacker needs to gather for the

training set is nmsite ·ninst+nnmsite. Here, nmsite is the number
of monitored sites (which we set to 100), ninst is the number of in-
stances of each site, and nnmsite is the number of non-monitored
sites. The attacker controls ninst and nnmsite to improve the ac-
curacy of classification. We are interested in knowing how large
those variables must be to ensure accurate classification.

We performed experiments on Wang et al.’s kNN (with the num-
ber of neighbours set to 5) and the data set they used for their
experiments as a basis of comparison with their experimental re-
sults [22]. We evaluate the effect of ninst and nnmsite on TPR and
FPR. In Figure 1 we held nnmsite constant and varied ninst, and
in Figure 2 we held ninst constant and varied nnmsite. We see that
a higher ninst improves TPR but slightly worsens the FPR and a
higher nnmsite improves FPR but slightly worsens the TPR. TPR
reaches above 70% and FPR reaches below 0.5% at ninst = 31 and
nnmsite = 3700. At this level of accuracy, for nmsite = 100, the
number of web pages the attacker must load is 6800. If the attacker
loads more web pages, the accuracy still increases, but at a slowing
rate. The attacker can further trade off an increased TPR for an in-
creased FPR by intentionally including fewer non-monitored data
points (so neighbours of each point are less likely to originate from
the non-monitored class) or by decreasing the number of neigh-
bours (as a page can only be classified as a monitored page only if
all of its neighbours originated from that page).

We examine the above value of 6800 to determine whether or not
it is realistic. In this data set, the mean amount of time to load each
page was 12 s, which would mean that the whole training set could
be re-collected once per 0.9 days on a single machine. Juarez et al.
observed a decrease in accuracy (in a different algorithm) if data
was collected 10 days apart, but they did not show any change in
accuracy for fresher data. We therefore claim that the attacker can
maintain a sufficiently fresh training set with minimal resources. If
the attacker wishes to monitor more sites, the required size of the
training set would increase correspondingly.

Juarez et al. showed that if the classifier trains on one version of
Tor Browser but tests on another, the accuracy may deteriorate. [13]

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

TPR FPR

ninst

Figure 1: TPR and FPR when ninst varies between 0 and 50,
and nnmsite = 9000. The thinner line indicates TPR (left y-
axis), and the thicker line indicates FPR (right y-axis).

 0.74

 0.76

 0.78

 0.8

 0.82

 0 1500 3000 4500 6000 7500 9000

 0

 0.005

 0.01

 0.015

 0.02

TPR FPR

nnmsite

Figure 2: TPR and FPR when nnmsite varies between 0 and
9000, and ninst = 50. The thinner line indicates TPR (left y-
axis), and the thicker line indicates FPR (right y-axis).

This is because Tor has used two different WF defenses [19], and
cell sequences appear different under different defenses. In the
worst case, the attacker will have to collect three times as much
data to adjust for different versions of Tor Browser, which is still
practical. Furthermore, if Tor Browser is outdated, it warns the
client in its start page and encourages the client to update.

4.2 Training set update
We showed above that the attacker can maintain a fresh train-

ing set by collecting new data and dropping the oldest data points.
However, some web pages almost never change while others change
daily, so it is inefficient to simply update all data points. In this sec-
tion, we design a more efficient scheme to maintain a fresh training
set.

We assign a score for each point and drop the lowest-scoring
data points from the data set. We compute such a score by adding
together a consistency score and a relevance score with random
weights, as follows:

1. Consistency: The consistency score is the number of neigh-
bours belonging to the same class as the point itself.

2. Relevance: The relevance score is the number of points from
any class that have this point in its top-20 closest neighbour
set.

We chose random weights to show that both of these scores are
indeed useful, and they can be combined in any way; we did not
overfit our score.

Table 1: TPR of kNN after updating the training set using our
scheme with relevance and consistency scoring (Re-con), and
several other baseline comparisons (Stale, Random, Fresh).

Update method Accuracy (TPR)
Stale 0.711 ± 0.001

Random 0.756 ± 0.005
Fresh 0.772 ± 0.001

Re-con 0.775 ± 0.003

To test if our score is effective for updating the whole training
set, we construct the testing set by including only the freshest half
of the original data set, and we construct the training set by includ-
ing the highest-scoring half of the original data set. We use leave-
one-out cross validation, so that while testing an element from the
testing set, if it also appears in the training set, we do not allow the
classifier to use that element in the training set. If classification of
the testing set is accurate with such a training set, then the score is
effective. We compare our score with several baselines:

1. Stale: The training set is the least fresh half of the original
data set. The attacker does not update the training set.

2. Random: The training set is randomly selected. The attacker
updates random points in the training set.

3. Fresh: The training set is the freshest half of the original set
(as is the testing set). The attacker updates all points in the
training set.

The Stale training set is older than the Fresh training set by about
a week. We show the results in Table 1 by generating the training
sets 100 times with the above methods and classifying the testing
set with the generated training set. We show only the TPR as there
was no significant change in the FPR. Our new scheme is listed
as Re-con (relevance and consistency) in the table. The low stan-
dard deviation of the accuracy value convinces us that our updating
scheme is significantly more useful for classification than simply a
trivial random scheme or the Stale training set, and it is about as
useful for classification as the Fresh training set (which is the most
expensive to maintain). Therefore, the attacker can indeed maintain
an effective training set without having to update all data points.

5. SPLITTING ALGORITHMS
Current WF techniques only accept cell sequences correspond-

ing to a single page as input; under laboratory conditions, the re-
searcher uses the ground truth of the data collection system to de-
cide where to split the full sequence of cells into single-page cell
sequences. Therefore, these attacks cannot operate in the wild un-
less we can split accurately without this ground truth.

In this section, we tackle the splitting problem. Solving the split-
ting problem incorrectly could result in a cell sequence with extra
or fewer cells (harder to classify); missing a split altogether almost
certainly results in two negatives (two pages classified as a non-
monitored page that the attacker is not aware of). We explain the
terminology used in this paper, outline our strategy to solve the
splitting problem, and then discuss the specific algorithms we use.
In Section 6 we will see the results of the algorithms.

5.1 Terminology
In this work we introduce some new terminology in order to ex-

plain our splitting solution.

Tor delivers data in fixed-size Tor cells on the application layer
before it is packaged by TCP, and so our splitting algorithm uses
sequences of Tor cells rather than raw TCP/IP packets. To do so, we
reconstruct TLS records from TCP segments and infer the number
of Tor cells from the record length of each TLS record. When a
user visits a web page, the sequence of incoming and outgoing Tor
cells that result from the page visit is referred to as a cell sequence.
A single cell sequence corresponds to a single web page. The user
may visit many web pages over a long period of time (for example,
an hour), and the attacker collects the sequence of incoming and
outgoing cells as a full sequence.

In splitting, the attacker wants to divide the full sequence into
cell segments. The ultimate goal is to have cell segments that each
contain a single cell sequence (corresponding to one web page).
These are referred to as single-page segments. Cell segments that
contain more than one page, possibly in error or as a temporary
transitional state between the full sequence and single-page seg-
ments, are referred to as multi-page segments.

To obtain single-page segments, the attacker needs to find the
correct splits. A split is a location in the full sequence where the
cells before the split and the cells after the split belong to differ-
ent web pages. In multi-page segments where multiple pages may
overlap, we define a split as the location of the first cell of the latter
page. In such a case, splitting correctly would still result in some
overflow of cells into the latter segment. We do not attempt to split
between different streams (for example, different images or scripts)
of the same web page.

5.2 Splitting process
There are three steps in our splitting process, as shown in Fig-

ure 3:

1. Time-based splitting. The full sequence is split with a sim-
ple rule: if there is a time gap between two adjacent cells
greater than some amount of seconds tgap, then the sequence
is split there into individual cell segments.

2. Classification-based splitting. Time-based splitting may not
be sufficient to split multi-page segments with a smaller time
gap than tgap. We use machine learning techniques both to
decide whether or not to split them further (split decision)
and where (split finding).

3. Page identification. The objective of the first two steps is
to split the full sequence into single-page segments as ac-
curately as possible. Then, we may attempt to identify the
page corresponding to the cell segment. In this work we will
investigate the effect of background noise, incorrect splitting,
and incomplete pages on known page identification techniques,
but developing more powerful page identification techniques
is beyond the scope of this work.

The following types of segments may result from time-based
splitting:

1. Single-page segments. In this case we should not attempt to
split the segment further.

2. Two-page segments. We attempt to split these cell segments
by finding the point where the second page starts.

3. Multi-page segments containing three or more pages.

We apply classification-based splitting in two steps in order to
split two-page segments further into single-page segments. First,

Full
Sequence

Single-page
Segment

Multi-page
Segment

Time-
based

Splitting

Classification-
based

Splitting

Page
Identification

Figure 3: Splitting process, with ideal results. Overall, the at-
tacker wants to obtain single-page segments from the full (raw)
sequence.

in split decision, we attempt to distinguish between single-page
and two-page segments with machine learning. Then, in split find-
ing, we take two-page segments and find the optimal location to
split them. To find a split in a two-page segment, the classifier
looks at each outgoing cell and assigns a score based on features
of its neighbouring cells. The classifier guesses that the maximally
scored cell is the correct split.

We do not split multi-page segments containing three or more
pages. Our methods may apply to these segments as well, but
the accuracy would be lower, and it complicates our presentation.
Rather, we show in Section 6.2 that they are unlikely to occur, and
we minimize their occurrence probability as an explicit strategy.

5.3 Time-based splitting
Cell sequences from page loading may be separated by a time

gap during which there is no web activity. We therefore split the
full sequence at all points in the sequence where no traffic is ob-
served for some amount of time tgap. Our choice of tgap seeks
to minimize the chance of splitting single-page segments, which
should not be split any further. A larger tgap reduces such a risk
but renders multi-page segments more likely if the client’s dwell
time is small.2 To split these we need to apply classification-based
splitting, which we discuss in the next section.

To obtain the correct tgap we consider two potential errors re-
sulting from splitting with tgap:

1. Splitting a single-page segment with tgap. The attacker should
not split single-page segments further. We will consider the
consequences of such a split: it is still possible to classify
a cell sequence correctly even with only part of the cell se-
quence.

2. Failing to split a multi-page segment with tgap. The proba-
bility of this error occurring depends on dwell time. We must
proceed to classification-based splitting in order to split two-
page segments, which is less accurate than a simple time-
based rule.

We want either source of error to be unlikely. A smaller tgap
increases the chance of the former and decreases the chance of the
2The dwell time is the amount of time a user stays on a page be-
tween two page visits.

latter, and vice-versa, so a suitable value must be chosen. We will
show how we choose tgap and how it affects accuracy values in
Section 6.2.

5.4 Classification-based splitting
Cell segments used in classification-based splitting can consist

of web pages organized in four possible ways:

Class 1. Two pages, positive-time separated. This is where the
user dwells on a web page for an amount of time before ac-
cessing the next, thus causing a lull in web activity and a
noticeable time gap in traffic. This noticeable time gap is,
however, less than tgap used by time-based splitting; other-
wise it would have been split in time-based splitting.

Class 2. Two pages, zero-time separated. This is where the user
clicks on a link from a web page that is loading, thus halting
the web page and sending out requests for the next immedi-
ately, so that there is a clear division between two web pages
but it is not marked by a time gap.

Class 3. Two pages, negative-time separated. This is where the
user is loading two pages at once in multiple tabs. In this
case, we consider a correct split to be the time at which the
second page starts loading. This is the hardest class to split
as there is no noticeable gap nor a clear pattern of cells in-
dicating the gap. However, we can still split cell sequences
in this class using machine classification by extracting useful
features. We list our feature set in Appendix A.

Class 4. One page. In this case time-based splitting was sufficient
to isolate a page into its own cell segment. We need to avoid
splitting such a page.

To split two-page segments properly is a two-step process. The
first step is split decision, where we distinguish between two-page
segments and single-page segments. This is necessary to perform
the second step, split finding, where we find the split in two-page
segments.

Split decision. The machine for split decision takes as input a
page segment, and returns a binary “yes” (it is a two-page segment)
or “no” (it is a single-page segment). It is trained on two classes:
a class of two-page segments, and a class of single-page segments.
If split decision returns “no”, we believe the sequence comes from
class 4, so we skip split finding and go straight to page identifica-
tion. For split decision, we tried kNN, Time-kNN, and SVM:

1. kNN: kNN with features and weight learning. This is similar
to the approach used by Wang et al. for website fingerprint-
ing [22], where features are extracted from the cell segment
and used by a weight learning algorithm that determines the
distance function, which is used by a kNN classifier. We
tested this algorithm with their original feature set.

2. Time-kNN: Time-based kNN. We added a number of fea-
tures to the above that are related to inter-cell timing. These
include the largest and smallest inter-cell times in the cell
segment, the mean and standard deviation for inter-cell tim-
ing, and others.

3. SVM: SVM with features. This is similar to the approach
used by Panchenko et al. for website fingerprinting [18]. The
chief difference is that we choose a different cost and gamma
value (as this is a different problem); in addition, we do not

append the entire cell segment onto the feature list. We se-
lected parameters for the SVM as it is highly sensitive to in-
correct parameters. We chose the radial basis function with
γ = 10−13 and cost for incorrect classification C = 1013 to
maximize accuracy.

Split finding. When the split decision machine returns “yes”,
we move on to split finding. The correct split location is the point
at which the second page begins loading (i.e. an outgoing request
cell is sent to the server of the second page). To find the correct
split, we score every outgoing cell in the cell segment based on
its neighbourhood of cells, and return the highest-scoring outgoing
cell as the location of the guessed split. The split-finding machine
takes as input a cell and its neighbourhood of cells, and returns a
score representing its confidence that this cell marks the start of the
second page. For split finding, we tried kNN, LF-kNN and NB:

1. kNN: A kNN classifier with a scoring system. As the features
used by Wang et al. [22] are not suitable for splitting, we used
a set of 23 features based on timing and cell ordering, given
in Appendix A. We score each candidate cell by finding 15
closest neighbours: Neighbours from the “correct split” class
increase the score and neighbours from the “incorrect split”
class decrease the score. We guess that the highest-scoring
candidate cell is the real split.

2. LF-kNN: A kNN classifier that uses the last cells before
splits and first cells after splits to classify elements. The clas-
sifier recognizes four classes: correct-before, the last 25 cells
before a correct split; correct-after, the next 25 cells after
a correct split, and similarly incorrect-before and incorrect-
after for incorrect splits. When evaluating a candidate split,
the last 25 cells before the candidate split are scored against
correct-before and incorrect-before and the next 25 cells are
scored against correct-after and incorrect-after.

3. NB: Naive Bayes with features. The Naive Bayes classi-
fier involves explicit probabilistic scoring, which is suitable
for this purpose, and it was used successfully by Liberatore
and Levine [14] for WF. Features are trained and tested with
the assumption that they follow independent normal distri-
butions. We use the same feature set as kNN above. Each
potential split will have a score indicating the possibility that
it belongs to the first class, and the potential split with the
highest score is picked out.

We intentionally chose methods similar to ones that succeeded
for WF as WF is similar to splitting. We did not attempt to use
SVMs with Damerau-Levenshtein distance (like Cai et al. [3]) be-
cause the Damerau-Levenshtein distance ignores timing, and tim-
ing is important in finding splits.

6. SPLITTING RESULTS
In this section, we experimentally validate our splitting algo-

rithms and show their accuracy. The main results are:

1. Time-based splitting (Section 6.2). Empirically, we find
that we can perform time-based splitting with tgap = 1.5 s, at
no cost to page identification accuracy. We will discuss pre-
vious research, which suggests that most web page accesses
have a higher dwell time than tgap.

2. Classification-based splitting (Section 6.3). If the above
fails to split a two-page segment (i.e., the time gap is smaller

or did not exist), we find that we can still perform split deci-
sion to identify two-page segments and split finding to split
them correctly with high accuracy.

Combined, these results mean that we can split full sequences
into single-page segments with high accuracy.

6.1 Experimental setup
We collected data as described in Section 3.3. To acquire ground

truth for splitting, we instrumented Tor to log cell information: in
particular, we needed the stream ID and data type of each cell.3 To
distinguish between cells from two different pages, we recorded the
time when the request for the second page was sent, and marked the
first outgoing STREAM BEGIN cell at or after that time as the start
of the second page. All new streams started after that cell were
marked as belonging to the second page, whereas streams before
that cell were marked as belonging to the first page. This allows us
to record ground truth of which page each cell belonged to.

We loaded zero-time separated pages (class 2) by loading two
pages in the same tab, and we loaded negative-time separated pages
(class 3) by loading two pages in different tabs, with a time gap be-
tween 5 and 10 seconds. We chose this time gap to give enough
time for the first page to start loading, and to ensure that the chance
of the first page finishes loading before the second page starts is
small. If the first page finishes loading before the second page
starts, then these two pages are actually separated by a positive
time gap. We processed all cell sequences to find positive-time
separated two-page segments this way, and moved them from their
original classes to positive-time separated pages (class 1). Overall,
the number of elements in classes 1, 2, 3 and 4 were about 1800,
1200, 1500, and 1600 respectively.

6.2 Time-based splitting
The first step in processing the full sequence into single-page

segments is to split the full sequence with a simple time-based rule:
if the difference in time between two cells exceeds some value tgap,
then we split the sequence there.

A smaller tgap has a larger chance of splitting single-page seg-
ments, which is erroneous. We measured this effect by applying
time-based splitting to single-page segments, and testing page iden-
tification with kNN on the resulting segments while varying tgap
from 0.2 to 4 seconds. If tgap splits a single-page segment into
several segments, we chose the largest segment to keep to classify,
and assign the smaller segments to the non-monitored class. In Fig-
ure 4 we plot the resultant negative effects on the true positive rate
(there was no noticeable effect on the false positive rate). We see
from Figure 4 that the drop in accuracy becomes negligible after
around tgap = 1.5 s. We therefore suggest tgap = 1.5 s for time-
based splitting.

It may be argued we should reduce tgap below 1.5 s, to trade an
increased chance of splitting single-page segments for an increased
chance of splitting multi-page segments. Recall that classification-
based splitting does not handle segments with three or more pages
(two or more dwell times less than tgap in a row), so we want them
to be rare after time-based splitting.

As we cannot collect information on Tor clients, we do not know
the true dwell time distribution of Tor clients, so we must defer to
previous work on dwell time for web traffic (without Tor). It has
long been established that dwell time has a heavy tail [6]. Previ-
ous authors have found dwell time to be well-fitted by Pareto [4],
3Any local, passive attacker can use our splitting method from
tcpdump info; we only need cell data for experimental ground
truth.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1 2 3 4 5

D
e

c
re

a
s
e

 i
n

 T
P

R

tgap (seconds)

Figure 4: Decrease in TPR of the kNN classifier when splitting
cell sequences with tgap.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

-50 -40 -30 -20 -10 0 10 20 30 40 50

D
e

c
re

a
s
e

 i
n

 T
P

R

Split deviance (in cells)

Figure 5: Decrease in TPR if the split is guessed incorrectly.
A negative split deviance indicates that the guessed split was
before the correct split, and a positive split deviance indicates
it was after. There are two lines: The thicker line is for the
segment that received extra cells because the split was in the
wrong place; the thinner line is for the segment that lost cells.
The false positive rate did not change significantly.

lognormal [17] and “negative-aging” Weibull [15, 17] distributions
with the mean being around a minute. Therefore, the probability of
the dwell time being under tgap = 1.5 s twice in a row (for multi-
page segments with three or more pages) is small. In other words,
reducing tgap further would produce no notable benefit but incur a
heavy cost in page identifcation accuacy (as in Figure 4).

6.3 Classification-based splitting
In this section, we present our results on splitting two-page seg-

ments with classification. We used two metrics to evaluate the ef-
fectiveness of splitting:

1. Split accuracy. We consider the split correct if it is within 25
incoming and outgoing cells of the correct split. We choose
25 as a range range within which the page identification TPR
remains above 50–60% (we will show this later). Randomly
guessing any outgoing cell as the correct split will result in a
split accuracy of 4.9% (computed from our data set). We also
show the standard deviation of split accuracy by randomizing
parts of the data set for training and testing.

2. Split deviance. This is the number of cells the guessed split
was from the correct split. We present the three quartiles of
this value. A larger deviance increases the difficulty of page
identification.

We measured the effect of split deviance on page identification
accuracy with Wang et al.’s kNN. First, we took the last ` cells from
a single-page segment and prepended it to another single-page seg-

Table 2: Overall split accuracy for the best algorithms
(Time-kNN for split decision, kNN for split finding). Classes
1, 2, and 3 are positive-time, zero-time, and negative-time sep-
arated two-page segments respectively; Class 4 is single-page
segments. For class 4, split accuracy is simply the chance that
it was identified as class 4 (i.e. split decision returned “no”).

Class 1 Class 2 Class 3 Class 4
0.88± 0.05 0.63± 0.05 0.32± 0.04 0.97± 0.02

ment, and tested the effect of varying ` on the accuracy of identi-
fying either page; this simulates the situation where the split was
too early. Similarly we tested the effect of varying ` on accuracy
when the split was too late. We show the results in Figure 5. We
see that under 5 cells the decrease in TPR is negligible, with the
exception that a cell segment which lost its first few cells is signifi-
cantly harder to classify (due to the fact that the kNN uses the first
few cells as an important feature). Under 25 cells the decrease in
TPR is around 20% except for this specific case.

Split decision.
We evaluate the accuracy of split decision: distinguishing be-

tween single-page segments and two-page segments. We collected
5,000 two-page segments and 5,000 single-page segments from the
sensitive site list. We tested kNN, Time-kNN, and SVM (described
in Section 5.4) for this problem, and show the split accuracy and
absolute split deviance.

The three classifiers had similar performance, except that SVM
had trouble identifying class 4 (single-page segments). Since iden-
tifying class 4 as class 1/2/3 means that it will undergo splitting by
the split finding process, and splitting a single-page segment makes
classification significantly harder, we want class 4 to be identified
correctly. Therefore the other two methods are superior; we chose
Time-kNN for further experiments. We present the complete data
in Table 4 in Appendix B.

Split finding.
We evaluate the accuracy of split finding in two-page segments.

We tested kNN, LF-kNN, and NB for this problem (described in
Section 5.4), and similarly present the split accuracy and absolute
split deviance.

For both cases, our results showed that NB was only slightly bet-
ter than random guessing, even though it used the same features as
kNN. This is possibly because kNN was more tolerant to bad fea-
tures than NB, as the kNN weight-learning process filtered out bad
features. LF-kNN was overall slightly worse than kNN in terms
of finding the correct split. This may be because LF-kNN is only
allowed to train on a maximum of 25 cells before and after true
splits, so it has no access to features relating to the remainder of the
cell sequence (such as total number of cells in the sequence). We
present the complete data in Table 5 in Appendix B.

Finally, we combine all the results in this section and present
split accuracy using the best algorithms (Time-kNN for segment
classification and kNN for split finding) in Table 2. The table shows
that classification of Class 3 is indeed the most difficult: in fact, we
cannot expect to correctly identify overlapping pages.

7. REMOVING NOISE
In this section, we will discuss another aspect of realistic cell

sequences that may deteriorate theoretical accuracy values: back-
ground noise. The client may, for example, download a file, listen
to music, or watch a video while browsing. These activities are per-

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50

D
e

c
re

a
s
e

 i
n

 T
P

R

Noise cells per second

Figure 6: Decrease in TPR of the kNN classifier when random
noise is added.

sistent and may interfere with both splitting and page identification
if the noise transmission rate is high enough. We characterize noise
in Section 7.1. Then, we present two negative results:

1. Removing background noise is difficult (Section 7.2). We
demonstrate the difficulty both practically and analytically.
Practically, we will describe how our classification-based and
counting-based approaches both failed to remove noise ac-
curately. Analytically, we will show that there are inherent
difficulties in removing this noise due to variation in intercell
timing.

2. Generating noise is difficult with Tor Browser (Section 7.3).
Due to the design of Tor Browser, it is difficult to generate
sufficient noise on Tor to disrupt WF, as Flash is disabled and
file downloading is slow and discouraged.

7.1 Characterizing noise
We first characterize noise by identifying the noise rate (mea-

sured in cells per second) that is necessary for WF accuracy to
drop. To do so, we add random cells to cell sequences and ask
the kNN classifier to identify the original page. The attacker in this
case is not aware of the noise and does not attempt to adjust for
it; his training set has no noise cells. We add noise cells at bnoise

cells per second, with each intercell time selected uniformly ran-
domly between 0 and 2/bnoise seconds. We show the results in
Figure 6. The figure shows that decrease in TPR becomes signifi-
cant after 5 cells per second, and the TPR has dropped significantly
at around 20 cells per second (80 kbps). In general, video stream-
ing, audio streaming and file downloading may exceed this bit rate,
while other sources of noise such as chatting and AJAX may not.

7.2 Difficulties in removing noise
We collected two instances of noise over Tor. First, we down-

loaded a 10 GB file from a web site that offered speed testing for
users. Second, we downloaded 10 minutes of audio from a music
site. When plotting the number of cells loaded over time, our audio
file was shaped as a step function, whereas our file download was
continuous.

We merged these noise cells with web cells (keeping timing and
ordering), and attempted to remove only the noise cells. We at-
tempted two approaches to noise removal: the classification-based
approach, and the counting-based approach. In the classification-
based approach, the attacker attempts to use machine learning to
decide whether a given cell is noise or not. In the counting-based
approach, the attacker counts the total number of cells per interval
of time and removes a number of noise cells in each interval.

With our noise data, we will find that there are inherent difficul-
ties in both approaches due to the high degree of randomness in
noise.

Classification-based approach.
First, we show a classifier that failed to remove noise accurately,

using feature extraction in an approach similar to splitting and WF.
Although we cannot prove that noise removal is impossible, at least
it is significantly more difficult than splitting and WF. For this ex-
periment, we reduced the file download rate to the web browsing
rate, so that the number of cells of each class is about equal.

This problem is similar to split finding, so we will use a similar
algorithm: we extract a neighbourhood of cells from each candidate
cell, and use a scoring classifier to score the candidate cell. We
used 65 features, similar to the features we used for split finding,
and we give the full list in Appendix A. To attempt to classify this
set, we used SVM with the radial basis kernel, and parameters γ =
10−13 and cost for incorrect classification C = 1013 to maximize
accuracy. We chose the SVM because its kernel method may be
able to find an implicit feature space where the features are usable,
whereas kNN has no such capability.

There were two classes: web cells and noise cells. With 400 test-
ing and 400 training elements for each, we ran the SVM 100 times
on random subsets of the sensitive data set (which has 4800 ele-
ments). The accuracy was 67±10% for both classes. These values
are low compared to what is necessary for accurate page identifica-
tion after noise removal. Figure 6 suggests that at around 20 cells
per second (about 8% of web-browsing traffic rate) page identifi-
cation deteriorates significantly. If the noise cell rate is about equal
to the web cell rate, we found that the classification accuracy needs
to be above 92% for the kNN to succeed. Alternatively, the at-
tacker needs to use a more noise-resilient classification algorithm.
We have therefore shown that our attempt at a classification-based
approach failed to remove noise.

Counting-based approach.
We devised two counting-based algorithms, one for removing

continuous noise and one for removing step-function noise. We
reduced the file download noise rate to the same as the audio noise
rate, so that a comparison could be made between continuous noise
and step-function noise. Then, we mixed web cells and noise cells
together, as above.

For continuous noise, we calculated the noise cell rate, and at-
tempted to remove the noise by removing 1 incoming cell every t
seconds, where 1/t is the observed noise rate. More precisely, we
divided the noisy cell sequence into portions of t seconds, and re-
moved the first incoming cell from each portion. If there was no
cell within a portion, we also attempted to remove an extra incom-
ing cell from the next portion.

To remove step-function noise, we used an algorithm that learned
the properties of each step, including the average duration of the
step, the number of cells in the step, and the amount of time be-
tween steps. Then, we removed noise with a counting-based algo-
rithm similar to the one for continuous noise, parametrized by the
properties we learned.

We show the results in Table 3. The results show very poor accu-
racy in removing noise, even though we verified that we learned the
parameters of the noise correctly: our counting-based algorithms
removed significant numbers of real cells. This can be compared
to a baseline of 50% for file d/l noise and 42% for audio noise if
cells were simply removed randomly, at a rate proportional to the
total number of web cells and noise cells. The noise-removed se-
quence had, on average, 20% total length difference from the true
sequence, compared to around 40% if no noise removal was done
at all. Results from both counting-based algorithms are unrecog-
nizable by the kNN page identification classifier (accuracy is close
to random guessing).

Table 3: Noise removal accuracy for our counting-based algo-
rithm. Noise and web cells removed are percentages of their
totals. A higher value for the former and a lower value for the
latter indicates more accurate noise removal.

Noise cells removed Web cells removed
File d/l 55%± 16% 39%± 21%
Audio 66%± 14% 32%± 12%

Interestingly, we found that the kNN page identification classifier
still had a true positive rate over 50% if it was also allowed to train
on the results of noise removal; however, this is expensive as the
attacker would have to prepare a large number of noise data sets for
each possible source of noise. Nevertheless, this is not impossible.

Difficulties in noise removal.
We identified two reasons why both our classification-based al-

gorithm and our counting-based algorithm failed.

1. Short-term cell rate variation. Specifically for file down-
load noise, we found a very large variation in inter-cell time.
The mean time was 0.0004 s, but the standard deviation was
0.003 s which is seven times higher. Classification-based al-
gorithms may also be confused by such an inconsistent fea-
ture. If we were to use a counting-based algorithm that re-
moves one cell per 0.0004 s in accordance with the mean
noise rate, we would incorrectly remove a web cell or fail
to remove a noise cell with high probability.

2. Long-term cell rate variation. We also found that there was
significant variation in the number of cells sent over time in
the long term. We took our noise data and calculated the
number of cells sent for every 5 second interval. For file
d/l noise, we observed a mean of 11800 ± 1200 cells per 5
seconds; for audio noise, we observed 540 ± 30 cells per 5
seconds. Both of these variations are high enough that the
attacker may not be able to guess the cell rate correctly, thus
failing to remove significant amounts of noise.

7.3 Difficulties in noise generation
Although our results above show that noise removal is difficult,

we found that it may be unlikely for Tor users to generate sufficient
noise specifically on Tor Browser. The reasons are as follows:

1. Flash is disabled. Most multimedia sources require Flash,
which is disabled on Tor Browser. On some (but not all) of
these pages, a browser pop-up will ask if the user wants to
enable Flash. If the pop-up does not appear, the user cannot
view the page. Sometimes, even if the user clicks Allow on
the pop-up, the page will still fail to load even after refresh-
ing. It is a hassle to load Flash pages on Tor Browser. A miti-
gating factor to this difficulty is that YouTube recently started
using HTML5 by default for many of its videos, which may
allow Tor users to view YouTube videos more easily.

2. Low bandwidth. Tor nodes offer widely varying bandwidths,
which may sometimes make it difficult to load multimedia
even at the lowest quality. For example, YouTube suggests
a 1,000 kbps connection to view its 360p videos, but Tor cir-
cuits often offer less bandwidth [21].

3. Blocking due to localization. Some multimedia sites, such
as Netflix and Spotify, do not serve users in many countries.

Since Tor users appear to originate from their exit node and
thus their exit node’s country, these sites may not be acces-
sible on Tor. This is especially problematic for multimedia
sites due to copyright issues.

4. Blocking Tor. Some sites, such as Twitch, block Tor users
flat out by accessing the public list of Tor relays and blocking
those IPs. This allows sites to ban misbehaving users, and in
recent years this has become a growing problem for Tor [7].

These issues suggest that the average Tor Browser user is not
likely to generate significant noise in their web browsing to ad-
versely affect WF.

Another reason why Tor users might not generate significant
nosie to affect WF is Tor’s circuit dirtiness mechanism. In Tor,
circuits do not (by default) accept new TCP connections more than
10 minutes old. Noise that lasts longer than 10 minutes on a sin-
gle TCP connection (for example, a file download) may cease to
be noise at all if the attacker is able to distinguish among differ-
ent TCP connections. There are two cases where the attacker can
distinguish between TCP connections: first, if the client randomly
chooses a different entry guard (by default clients have three entry
guards to choose from when establishing circuits); second, if the
attacker is the entry guard currently used by the client.

8. DISCUSSION

8.1 Reproducibility of our work
We have built a small system that allows WF attacks to operate in

the wild. The system takes any full sequence as input, and performs
splitting and page identification to identify the web page(s) in the
full sequence, if any of the pages is in the monitored set. The reader
may download and test our system from the CrySP site https://
crysp.uwaterloo.ca/software/webfingerprint/.

Furthermore, to ensure scientific reproducibility of the results in
our paper, the following is available at the same URL:

Classifiers. We provide the code for our three split decision classi-
fiers, our three split finding classifiers, and our classification-
based and counting-based noise removal algorithms. They
include Python and C++ code.

Data. We provide the sensitive and open-world page data set we
used (as well as the list of sensitive pages), the multi-page
segments we collected for splitting, and the noise we col-
lected for noise removal.

Data collection tools. We provide our data collection tools with
instructions on how to use them. These include a modifi-
cation to Tor to collect cell traces and test our WF system
above.

8.2 Future work
In this paper, we do not claim that WF is now truly practical,

although we have tackled three important barriers that lay in the
way of practicality. This is because we do not have cell sequences
collected in the wild from real clients, so we cannot know the fi-
nal WF accuracy. While it is technically possibly to obtain such
cell sequences at a large scale from Tor exit nodes, there are both
ethical and legal barriers present; honest Tor exit nodes should not
be examining the contents of the traffic passing through them. We
hope to engage the community in a discussion of this issue.

While we have built a system to test WF attacks in the wild, the
training set in our system is not actively updated. Although we

have demonstrated that it is indeed practical to keep the training set
fresh in Section 4, we have not done so yet. We wish to populate
our training set with cell sequences gathered from real clients, but
we currently cannot do so.

9. CONCLUSION
In this work we have tackled three issues in website fingerprint-

ing that separate laboratory WF and realistic WF: maintaining a
fresh training set, splitting the sequences, and removing noise.

We showed that effective WF training sets can be small enough
for an attacker to naively update all data points in a cycle, keeping
it fresh. The attacker can maintain the training set even more effi-
ciently by using scoring metrics such as consistency and relevance;
using these metrics was as helpful for classification as simply up-
dating all data points.

For the splitting problem, which is necessary for website finger-
printing to operate in the wild, we found that splitting based on a
time gap of 1.5 s causes no loss of website fingerprinting accuracy.
Previous studies show that the user dwell time has a high probabil-
ity of being higher than 1.5 s. We have further demonstrated that
a number of machine classifiers can split the sequence with high
accuracy when there is no time gap, such as when a user loads one
page right after another.

We found that noise removal is difficult for the attacker. Our
classification-based and counting-based algorithms both failed to
remove noise accurately, and even a small amount of error in noise
removal translates to a large error in page identification. However,
we also find that users are unlikely to generate sufficient noise on
Tor Browser to disrupt WF, because of practical limitations of Tor.

Overall, we have built a system that can perform WF on se-
quences taken in the wild, although the final WF accuracy in the
wild is yet unknown because there are ethical and legal barriers to
data collection in the wild.

10. REFERENCES
[1] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine.

Privacy Vulnerabilities in Encrypted HTTP Streams. In
Privacy Enhancing Technologies, pages 1–11. Springer,
2006.

[2] X. Cai, R. Nithyanand, T. Wang, I. Goldberg, and
R. Johnson. A Systematic Approach to Developing and
Evaluating Website Fingerprinting Defenses. In Proceedings
of the 21th ACM Conference on Computer and
Communications Security, 2014.

[3] X. Cai, X. Zhang, B. Joshi, and R. Johnson. Touching from a
Distance: Website Fingerprinting Attacks and Defenses. In
Proceedings of the 19th ACM Conference on Computer and
Communications Security, pages 605–616, 2012.

[4] E. Casalicchio and M. Colajanni. A client-aware dispatching
algorithm for web clusters providing multiple services. In
Proceedings of the 10th international conference on World
Wide Web, pages 535–544, 2001.

[5] H. Cheng and R. Avnur. Traffic Analysis of SSL-Encrypted
Web Browsing. http://www.cs.berkeley.edu/
~daw/teaching/cs261-f98/projects/final-
reports/ronathan-heyning.ps.

[6] M. E. Crovella and A. Bestavros. Self-similarity in World
Wide Web traffic: evidence and possible causes. Networking,
IEEE/ACM Transactions on, 5(6):835–846, 1997.

[7] R. Dingledine. A call to arms: Helping Internet services
accept anonymous users.
https://blog.torproject.org/blog/call-

arms-helping-internet-services-accept-
anonymous-users, August 2014. Accessed Feb. 2015.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In Proceedings of the 13th
USENIX Security Symposium, 2004.

[9] K. Dyer, S. Coull, T. Ristenpart, and T. Shrimpton.
Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis
Countermeasures Fail. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, pages 332–346, 2012.

[10] G. Greenwald. XKeyscore: NSA tool collects ’nearly
everything a user does on the internet’. http://www.
theguardian.com/world/2013/jul/31/nsa-
top-secret-program-online-data, July 2013.
Accessed Feb. 2015.

[11] D. Herrmann, R. Wendolsky, and H. Federrath. Website
Fingerprinting: Attacking Popular Privacy Enhancing
Technologies with the Multinomial Naïve-Bayes Classifier.
In Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, pages 31–42, 2009.

[12] A. Hintz. Fingerprinting Websites Using Traffic Analysis. In
Privacy Enhancing Technologies, pages 171–178. Springer,
2003.

[13] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt. A
Critical Evaluation of Website Fingerprinting Attacks. In
Proceedings of the 21th ACM Conference on Computer and
Communications Security, 2014.

[14] M. Liberatore and B. Levine. Inferring the Source of
Encrypted HTTP Connections. In Proceedings of the 13th
ACM Conference on Computer and Communications
Security, pages 255–263, 2006.

[15] C. Liu, R. White, and S. Dumais. Understanding web
browsing behaviors through Weibull analysis of dwell time.

In Proceedings of the 33rd international ACM SIGIR
Conference, pages 379–386, 2010.

[16] L. Lu, E.-C. Chang, and M. C. Chan. Website Fingerprinting
and Identification Using Ordered Feature Sequences. In
Computer Security–ESORICS 2010, pages 199–214.
Springer, 2010.

[17] M. Molina, P. Castelli, and G. Foddis. Web traffic modeling
exploiting TCP connections’ temporal clustering through
HTML-REDUCE. Network, IEEE, 14(3):46–55, 2000.

[18] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website
Fingerprinting in Onion Routing Based Anonymization
Networks. In Proceedings of the 10th ACM Workshop on
Privacy in the Electronic Society, pages 103–114, 2011.

[19] M. Perry. A Critique of Website Traffic Fingerprinting
Attacks. https:
//blog.torproject.org/blog/critique-
website-traffic-fingerprinting-attacks,
November 2013. Accessed Feb. 2015.

[20] Q. Sun, D. R. Simon, Y.-M. Wang, W. Russell, V. N.
Padmanabhan, and L. Qiu. Statistical Identification of
Encrypted Web Browsing Traffic. In Proceedings of the 2002
IEEE Symposium on Security and Privacy, pages 19–30.
IEEE, 2002.

[21] Tor. Tor Metrics Portal.
https://metrics.torproject.org/. Accessed
Feb. 2015.

[22] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and
I. Goldberg. Effective Attacks and Provable Defenses for
Website Fingerprinting. In Proceedings of the 23rd USENIX
Security Symposium, 2014.

[23] T. Wang and I. Goldberg. Improved Website Fingerprinting
on Tor. In Proceedings of the 12th ACM Workshop on
Privacy in the Electronic Society, pages 201–212, 2013.

APPENDIX
A. SPLIT AND NOISE REMOVAL FEATURES

First, we list the 23 features we used for split finding with kNN.
For a candidate cell, we decide if that cell is indeed the correct split
by using these features. The feature list is as follows:

1. Five intercell times around the candidate cell. (5)

2. The mean, standard deviation, and maximum intercell time
for fifty cells before and after the candidate cell, and the time
between the candidate cell and the cell fifty cells before the
candidate cell. (4)

3. Time between candidate cell and the next incoming cell. (1)

4. The difference in time between the cell two cells after the
candidate cell and the cell two cells before the candidate cell;
the cell four cells after and four cells before; and so on, up to
eighteen cells. (9)

5. Number of incoming and outgoing cells five and ten cells be-
fore and after the candidate cell. (4)

For classification-based noise removal, we used a set of 65 fea-
tures, as follows:

1. Ten intercell times around the candidate cell. (10)

2. The mean and standard deviation of intercell times for four
and twenty-four cells around the candidate cell. (4)

3. Total number of outgoing cells. (2)

4. Directions of all cells within twenty-four cells before and af-
ter the candidate cell, including the candidate cell itself. (49)

We include the code for extracting these features in our published
data set as in Section 8. The feature set for LF-kNN is very similar
to the feature set for kNN, except that it only involved cells in one
direction, either before or after the candidate cell.

B. SPLITTING RESULTS
In this section we present the full tables of results from splitting.

Table 4 shows the results of split decision, and Table 5 shows the
results of split finding.

Table 4: Split decision accuracy. The number in row i, column
j is the probability that the classifier thought an element of class
i belonged to class j. A greater value in the diagonal is better.

Class 1/2/3 Class 4

kNN Class 1/2/3 0.92± 0.04 0.08± 0.04
Class 4 0.022± 0.006 0.978± 0.006

Time-kNN Class 1/2/3 0.96± 0.05 0.04± 0.05
Class 4 0.03± 0.02 0.97± 0.02

SVM Class 1/2/3 0.93± 0.01 0.07± 0.01
Class 4 0.10± 0.03 0.90± 0.03

Table 5: Split finding accuracy. We show the accuracy for each
of the three types of two-page segments (Class 1: positive-time,
Class 2: zero-time, Class 3: negative-time). We show the first,
second, and third quartiles of the absolute split deviance in
parentheses, separated with slashes.

Class 1 Class 2 Class 3

kNN 0.92± 0.02 0.66± 0.04 0.34± 0.04
(0/0/1) (2/8/59) (9/87/332)

LF-kNN 0.94± 0.01 0.61± 0.03 0.18± 0.02
(0/0/2) (3/13/53) (60/205/526)

NB 0.16± 0.03 0.09± 0.02 0.04± 0.02
(67/339/1507) (237/851/2126) (388/1385/3922)

