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Abstract—Modular reduction is an integral part of
the underlying computation in several cryptographic
systems. This paper identifies a potential vulnerability
in one of the most well-known reduction algorithms,
namely Barrett’s reduction algorithm. The vulnerabil-
ity lies in the algorithm’s while loop which is usually
unbounded in straightforward implementation. An ad-
versary can exploit the vulnerability by tampering with
the sign flag of the processor’s status register. Our
work reveals that attacks exploiting such weaknesses
can cause a huge amount of completely unnecessary
arithmetic operations, rapidly draining energy from a
cryptographic device that implements this reduction.
Devices running on batteries, for example laptops and
smart phones, will lose energy completely when faced
with such attacks. This kind of consequences might
also result if the sign flag becomes faulty due to nat-
ural causes such as voltage glitches or exposure to
radiations. Countermeasures for the aforementioned
vulnerability are also discussed in this paper.

Index Terms—Barrett’s reduction algorithm, cryp-
tographic device, energy exhaustion attack, status reg-
ister, countermeasure.

I. Introduction

Power exhaustion attacks, that can be triggered by
adversary induced faults or malicious activities, are de-
signed to render the device nonfunctional through denial
of service. For example, in [17] the authors investigated
how an adversary exploits the cellular data service to
exhaust the mobile phone’s battery. Similar work was
investigated in [14], where attacks were devised to drain
the battery power of a mobile computer. Brownfield et. al.
[8] found that wireless networks are vulnerable to similar
attacks which can drain the power of the system reducing
network lifetime from years to days. There has been quite
an amount of work done so far, with different proposals
of attacks trying to exhaust the power of the system in
wireless sensor networks [18],[11],[13],[7]. To the best of
our knowledge, no proposal has been made with the idea of
using the vulnerability of a loop condition in the reduction
algorithm.

This paper identifies a potential vulnerability in Bar-
rett’s reduction algorithm, that can lead to an energy
exhaustion attack1. An adversary can exploit the vulner-
ability by running a malicious code or by injecting a fault

1In the literature [11], this is also known as power exhaustion
attack.

in the processor, which is executing Barrett’s reduction
algorithm. We show that this attack can be successful in
draining out the energy of the device by forcing a huge
amount of unnecessary computations.

Modular reduction plays an important role in certain
crypto algorithms. Public key encryption is primarily done
on very large numbers which involve modular reduction.
Reduction of an integer z modulo another integer p, is
simply the remainder r obtained from dividing z by p (z
mod p), where 0 ≤ r < p. The naive approach to modular
reduction is to use a division algorithm, which is iterative
in nature and is quite slow. In 1986, P. Barrett [2] proposed
a faster algorithm for modular reduction. An important
feature of this algorithm is the computational efficiency
and the ease of implementation. In this paper, energy
exhaustion attack on Barrett’s algorithm is investigated.
It can increase the computation time of the device which
implements the algorithm manifolds leading to a huge
loss of energy during its operation. To the best of our
knowledge, this kind of energy exhaustion attack has not
been mounted on any reduction algorithm before.

The main contribution of our work lies in identifying
a potential vulnerability of Barrett’s reduction algorithm
which can lead to an energy exhaustion of the device
implementing the algorithm. The energy exhaustion is due
to the execution of extra subtraction operations and we
derive lower and upper bounds on the number of such
operations. In addition, we present a modified version of
the Barrett reduction algorithm that avoids the aforemen-
tioned vulnerability.

The paper is organized as follows. In Section II, we
provide essential preliminaries about Barrett’s reduction
algorithm. Next, in Section III we describe the potential
vulnerability of Barrett’s reduction algorithm and how this
vulnerability can be used to mount an energy exhaustion
attack. We examine the consequences of the attack in
Section IV by performing a simple experiment on a general
purpose processor. Countermeasures have been outlined
in Section V. Finally, concluding remarks are added in
Section VI.

II. Background

Barrett’s reduction algorithm was introduced to imple-
ment public key encryption on digital signal processors [2].
In the reduction technique, the radix or base b is chosen



Algorithm 1 Barrett’s reduction algorithm [2]

Require: p, bk−1 ≤ p < bk, b ≥ 3, k = blogb pc + 1, 0 ≤
z < b2k, and µ = bb2k/pc

Ensure: z mod p
1: q̂ ←

⌊⌊
z/bk−1

⌋
.µ/bk+1

⌋
2: r ← (z mod bk+1)− (q̂ · p mod bk+1)
3: if r < 0 then
4: r ← r + bk+1

5: end if
6: while r ≥ p do
7: r ← r − p
8: end while
9: return r

suitably ≥ 3 such that b = 2W where W is the processor
word size. For modulus p, one pre-computes µ =

⌊
b2k/p

⌋
where k is the number of digits in radix b representation
of p, i.e k = blogb(p)c+1. Barrett’s algorithm is described
in Algorithm 1.

The main reason behind the efficiency of this modular
reduction algorithm is about estimating the quotient value
in Step 1. The task of estimation involves operations,
specifically shifting, truncation and multi-precision mul-
tiplication, that are less time consuming than a multi-
precision division to determine the exact quotient b zpc.

Lemma 1. [10] Let q denote the actual quotient after
dividng z by p, i.e., q = b zpc. Then,

q − 2 ≤ q̂ ≤ q

where the estimated quotient q̂ is as defined in Algorithm
1.

Lemma 1 shows that the estimated value of the quotient
q̂ will be at the most two less than the actual quotient
q. This implies that we need to subtract the estimated
remainder z − q̂p from p at most twice to get the actual
remainder z − qp.
In [6], the authors represented the estimated quotient as
q̂ =

⌊⌊
z/b2k−t

⌋
.µ/bt

⌋
where k < t ≤ 2k. Based on that,

90% of the values of q̂ will be equal to b zpc and only in 10%
of cases q̂ will be two less than actual q. Compared to its
main counterpart namely the Montgomery algorithm [15],
the Barrett algorithm does not require p to be prime and
it produces the actual remainder (without any scaling or
multiplying factor).

We explain the main operations of Algorithm 1 using
two sets of parameters:

Example 1. Assume that z = 204927 and q̂ · p = 204317,
where p = 59, b = 10 and k = 2.

z mod bk+1 = 9 2 7

q̂ · p mod bk+1 = 3 1 7

r = z mod bk+1 − q̂ · p mod bk+1 = 6 1 0

Example 2. Assume that z = 314927 and q̂ · p = 313998,
where p = 59, b = 10 and k = 2.

z mod bk+1 = 9 2 7

q̂ · p mod bk+1 = 9 9 8

r = z mod bk+1 − q̂ · p mod bk+1 = −7 1

In Example 1, we have a positive remainder which
implies Step 3 to 5 in Algorithm 1 is skipped. On the other
hand, in Example 2, we get a negative remainder which
implies Step 3 to 5 are executed.

The value of z is greater than or equal to q̂ · p, but
under modular operation only the least significant digits
are scanned, computed and stored in the remainder r. This
step often renders r value as negative forcing it to enter
the if condition in Step 3 of Algorithm 1 as illustrated in
Example 2.

III. Potential Vulnerability

In this section, we identify a vulnerability in the Bar-
rett’s reduction algorithm and describe how this could be
exploited to mount an energy exhaustion attack.

Lemma 2. [10] For the symbols as defined in Algorithm
1.

0 ≤ z − q̂p ≤ bk+1

Since q̂ is an estimate of the actual quotient, z− q̂p is an
estimate of the actual remainder. In Step 2 of Algorithm
1, Lemma 2 is used to reduce the cost of determining the
estimated remainder, specifically, the 2k-digit subtraction
(z − q̂p) is reduced to the (k + 1)-digit subtraction (z
mod bk+1) - (q̂p mod bk+1). This is however an ”over”
optimization leading to the possibility of a negative re-
mainder in Step 2.
If we denote the remainder in Step 2 as r2, it is easy to
see that

−bk+1 < r2 < bk+1

When an arithmetic operation is performed using a general
purpose processor and a negative result is produced, it
typically affects the processor’s status register. The sign
flag is one of the bits of the status register which is set to
1 when the immediate past result was negative, otherwise
it is cleared to 0. The value of the sign flag determines
whether or not the if condition in Step 3 is satisfied. If
the sign flag is 1, only then bk+1 is added, so that the
value of the remainder after Step 4 is positive and equal
to z − q̂p.

In the past, attacks have been reported that exploits
the possibility of changing the value of the sign flag [4] to
induce an attack. The sign flag can be forced to 1 either
be injecting a fault in the relevant circuit or making the
processor run a malicious code. When the remainder is



positive, but the sign flag is forced to 1 after Step 2 of
Algorithm 1, the if condition will satisfy and bk+1 will
be added to the remainder. Denoting the value of the
remainder after Step 4 as r4, such an attack increases the
value of r4 such that it lies in the range of

0 < r4 < 2bk+1.

The consequence of the attack will be maximum if r is
close to bk+1. If r is positive, then an adversary can set
the sign flag in the status register to 1. This can be done
by deliberately making the if condition satisfiable. This
would leave the reminder value of r to be ≈ 2 · bk+1. The
range of p as described in Algorithm 1 is bk−1 ≤ p < bk.
The following lemma presents the number of times the
while loop will execute in case of a successful attack.

Lemma 3. A successful mounting of the attack on Algo-
rithm 1 will result in the number of subtraction operations
within the while loop ranging between b to 2b2.

Proof. The minimum and the maximum values of the
modulus can be bk−1 and bk respectively. The number of
iterations of the while loop is b rpc. Let n be the number
of iterations of the while loop. Then the range of n can be
written as follows:

rmin

bk
< n <

rmax

bk−1

bk+1

bk
< n <

2bk+1

bk−1

b < n < 2b2

Therefore, the worst case might arise when the value of
p is minimum and the value of r is maximum. The huge
amount of excessive computation will affect the power
consumption of the system.

If the attack is successful, the minimum number of
subtractions required is b. In the worst case, the number
of subtraction operations is 2b2 as mentioned in Lemma
3. For a practical RSA application, 3072-bit number is
used [10]. This number is stored in chunks of 64-bits
to be fit in registers. Therefore, the total number of
subtractions = 3072

64 × 2 × b2 ≈ 2134. For the purpose
of this calculation, the processor used is Intel Core i7
6500U. This processor can execute 20735 MIPS at 2.5
GHz. Thus, time taken to complete all subtractions
is 2134

20735×220 > 2104

25 = 299 seconds ≈ 274 years. Below
we provide Table I showing the impact of the attack
in terms of the number of W-bit word subtraction
operations that would be required for three values of
W covering low to high end processors. The figures in
the table provide a rough idea on the increased number
of operations on these integers due to the proposed attack.

Implementation of Barrett’s algorithm as described
in Algorithm 1 is found in several practical software

W b = 2W No. of subtractions

Min Max

16 216 216 233

32 232 232 265

64 264 264 2129

TABLE I: Estimation of the number of subtractions for
different word sizes.

cryptographic libraries such as Bouncy Castle [9] and
LibToMath [1]. When such an implementation running
on a handheld device comes under the aforementioned
energy exhaustion attack due to malicious codes, the
device’s battery will drain completely. The consequence
can be worse if such an implementation running on-board
a satellite, comes under an energy exhaustion attack. The
sign flag might be set to 1 through some circuit faults
caused by changes in environment.

IV. Experimental Results

In order to see the impact of the attack, a simple script
was written to run on victim’s computer. The script runs
the program and changes the sign flag in the status register
before executing if condition. This results in the execution
of the if condition from Algorithm 1 even though the
number in the register is positive.
In a real world scenario, a malware capable of changing
the sign flag while the Barrett’s algorithm is executed,
could get downloaded into the victim’s computer during
web surfing or other cyber activities. It is assumed that the
program which uses the Barrett reduction in the victim’s
machine is in public knowledge. An attacker can use this
information to develop the malware to accurately identify
the execution of various steps of the reduction algorithm.

In our approach, we have implemented Barrett’s re-
duction algorithm (Alg. 1). When the algorithm is exe-
cuted normally, the average energy consumption has been
computed using powerstat v0.02.09 which is a tool that
monitors the system and measures the power consump-
tion. Then, the script that exploits the vulnerability is
downloaded and run on the same machine and the average
energy consumption is calculated.

To give a simple example of how the attack can change
the number of times while-loop is run, the parameters of
Algorithm 1 is set as follows: z = 893994278, b = 16, p =
21987, k = 4, µ = 195341. Then, algorithm 1 computes
q̂ = 40660 and r = 2858. In a normal execution of the
algorithm, if condition will not be executed because r >
0. And since r < p, while-loop will not be executed as
well. However, when the script runs the program on the
machine, it changes the sign flag before if condition is
executed, this will result r = 1051434. So, while-loop will
be executed 47 times.

In our experiment, the average energy consumption
and the discharge rate of the battery is calculated using



powerstat. On average, if the program is running normally
without the attack being injected, the discharge rate of
the battery is 8.75 Watt/s. However, when the attack is
in place, the discharge rate of the battery is spiked to an
average of 22.4 Watt/s in the worst case.

In this experiment, we used 192-bit numbers which
is recommended by National Institute of Standards and
Technology (NIST). The battery was fully discharged
before the attack finishes. The experiment was run on a
64-bit processor Intel Core i7-6500U CPU @ 2.50GHz.

V. Countermeasure

A variety of countermeasures are possible against the
above mentioned energy exhaustion attack to secure the
cryptographic device, which implements the reduction al-
gorithm. For example, the status registers of the processor
will be the main target of the attacker. Securing the
targeted storage area will prevent the sign flag to get set
to 1 deliberately.

An alternative is to update r in Step 2 of Algorithm 1
as

r ← z − q̂p

this increases the number of W -bit subtractions from k+1
to 2k. We can lower the computation cost of updating r
using the following lemma:

Lemma 4. Let u and v be two n digit integers represented
in radix b ≥ 3, that is u = (un−1un−2 · · ·u0) and v =
(vn−1vn−2 · · · v0). If 0 ≤ u − v < bl, where 0 < l < n − 1,
then

u− v = (u mod bl+1)− (v mod bl+1) (1)

Proof. In order to comply with the condition u − v < bl,
the most significant digits of u and v should be same up
to position (l + 1) which implies

ui = vi for (l + 1) ≤ i ≤ (n− 1)

Thus

u− v = (un−1un−2 · · ·ul+1ulul−1 · · ·u0)b

− (vn−1vn−2 · · · vl+1vlvl−1 · · · v0)b

= (ulul−1 · · ·u0)b − (vlvl−1 · · · v0)b

= (u mod bl+1)− (v mod bl+1)

Although we have used b ≥ 3 in Lemma 4 to align with
the description of Barrett’s algorithm in Algorithm 1, this
lemma is also valid for b = 2.

Note that

0 ≤ z − q̂ · p < z − (q − 2)p < 3p

0 ≤ z − q̂ · p < bk+1 (2)

Applying (1), we can write (2) as follows.

0 ≤ (z mod bk+2)− (q̂p mod bk+2) < bk+1

Therefore, in Step 2 of Algorithm 1, the value of r can be
updated as follows where the result is always positive:

r ← (z mod bk+2)− (q̂ · p mod bk+2) (3)

This is illustrated in the following example:

Example 3. We continue with the same parameters
used in Example 2. The modification makes the algorithm
proceed with 4 least significant digits instead of 3.
Therefore under modulus bk+2, an extra digit is checked
which eliminates the chance of r to be negative after step
2 of Algorithm 1.

z mod bk+2 = 5 9 2 7

q̂ · p mod bk+2 = 4 9 9 8

r = z mod bk+2 − q̂ · p mod bk+2 = 1 9 2 9

Below we state a modified version of Algorithm 1, in
which we replace the while loop in Algorithm 1 by two if
conditions (Step 3-8 of Algorithm 2).

Algorithm 2 Modified Barrett’s reduction algorithm

Require: p, bk−1 ≤ p < bk, b ≥ 3, k = blogb pc + 1, 0 ≤
z < b2k, and µ = bb2k/pc

Ensure: z mod p
1: q̂ ←

⌊⌊
z/bk−1

⌋
.µ/bk+1

⌋
2: r ← (z mod bk+2)− (q̂ · p mod bk+2)
3: if r ≥ p then
4: r ← r − p
5: end if
6: if r ≥ p then
7: r ← r − p
8: end if
9: return r

Compared to Algorithm 1, the modified version requires
1 extra W -bit subtraction. This is due to the use of
bk+2 as modulus in Step 2 (as opposed to modulus bk+1

in Algorithm 1). Also, if only the necessary words are
computed for q̂ · p, the modified algorithm requires the
computation of one extra word compared to the original.

VI. Conclusion

In public key cryptosystems, like RSA or elliptic
curve signature schemes, the efficiency of implementations
mainly lie on the speed of modular multiplications. A
modular multiplication can be performed as an integer
multiplication followed by modular reduction. In order to
achieve a 128-bit security level, the RSA and the Elliptic
Curve Cryptography use 3072 and 256 bits long moduli,
respectively. Our work shows a potential vulnerability in
the well-known Barrett’s reduction algorithm. We show



how an injected fault can cause huge number of un-
necessary computations, thereby disrupting the normal
functioning of a cryptographic device that had imple-
mented Barrett’s algorithm. The normal reduction takes
2 subtraction operations but the energy exhaustion attack
can shoot the number of subtractions up to 2b2, where b
is the radix of the number to be reduced. It will adversely
affect the device and draw all the energy of the battery.

Finally, it is worth mentioning that the Barrett reduc-
tion’s vulnerability identified in this article may exist in
other algorithms that have unbounded control flows or
loop constructs.
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